
 Look Inside Chapter 1
 Simple System Interface v1.1 Introduction

Released: 2019/07/11 Page 1
© 2019 Gaming Standards Association (GSA)

Chapter 1

Look Inside

Introduction

 Look Inside Chapter 1
 Simple System Interface v1.1 Introduction

Page 2 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

1.1 Overview
This document describes the Simple System Interface. The Simple System Interface is designed to allow
systems to exchange information with other systems in a very simple manner.

With the Simple System Interface, a Client System uses the HTTP protocol and HTTP verbs to access
resources on a Host System. The data exchanged between systems is encoded using JSON.

The resources on the Host System could allow the Client System to retrieve (HTTP GET) information from
the Host System. For example, a G2S host could act as a Client System and request information about players
from a Host System. Or, the resources on the Host System could allow the Client System to report (HTTP
POST) information to the Host System. For example, a G2S host could act as a Client System and report
events, which are originated by EGMs, to a data warehouse acting as a Host System. Other paradigms and uses
of the HTTP verbs are possible.

The resources available through the Simple System Interface are described in subsequent chapters of this
document.

.....(continued)...

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 25
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

Chapter 4

Look Inside

Voucher Resources

Extension in v1.1

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 26 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.1 Introduction
The resources within this chapter are used to manage the issuance and redemption of payment vouchers by
end-clients, such as redemption kiosks or cashier terminals. Payment vouchers are sometimes referred to as
“tickets” or “coupons”.

For example, the resources in this chapter can be used to record the issuance of a voucher by an end-client.
Subsequently, other resources in this chapter can be used to authorize the redemption of the voucher by the
same end-client or a different end-client.

Resources within this chapter can also be used to manage the configuration options used by end-clients when
performing voucher processing operations.

The resources are designed so that a client system could be acting on behalf of a series of end-clients, passing
requests from the end-clients through to the host. In the simplest case, the client system can be the end-client
itself, making requests on its own behalf. In this chapter, it is assumed that the client is acting on behalf of a
series of end-clients. The simpler case, where the end-client is acting on its own behalf, is also possible.

This functionality maps directly to similar functionality within the G2S and S2S protocols allowing a central
system to easily manage voucher processing operations across a series of clients using the G2S and/or S2S
protocols, as well as SSI.

4.1.1 Sequence Diagrams
The following sequence diagrams demonstrate how the resources within this chapter are intended to be used
to manage the issuance and redemption of vouchers as well as the configuration of end-clients. Other
scenarios are possible.

4.1.1.1 Initial Configuration

The following sequence diagram demonstrates the expected behavior when an end-client first starts
communicating with the host or resumes communicating after an outage.

1. The end-client requests the current configuration options from the client.

2. The client passes the request through to the host.

3. The host responds to the client with the current configuration options.

4. The client passes the current configuration options through to the end-client.

5. The end-client requests a new set of validation identifiers from the client.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 27
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

6. The client passes the request through to the host.

7. The host responds with a new set of validation identifiers.

8. The client passes the new set of validation identifiers through to the end-client.

4.1.1.2 Configuration Changes

The following sequence diagram demonstrates the expected behavior when an end-client detects that the
configuration options have changed and that a new set of configuration options is needed.

Each response from the host contains a configuration identifier. The configuration identifier identifies the
current set of configuration options that should be used by the end-client. The end-client is expected to
compare the configuration identifier contained in the responses from the host to the configuration identifier
currently being used by the end-client. If the configuration identifiers are not the same, the end-client is
expected to request a new set of configuration options.

In this example, the end-client detects a change to the configuration identifier in the acknowledgement to a
voucher issuance request. The change could have been detected in other responses as well.

1. The end-client notifies the client that a voucher has been issued.

2. The client passes the voucher issuance request through to the host.

3. The host acknowledges the voucher issuance request.

4. The client passes the acknowledgement through to the end-client.

5. The end-client detects that the configuration identifier contained in the acknowledgement is different
than the configuration identifier for the current configuration options that it is using.

6. The end-client requests the current configuration options from the client.

7. The client passes the request through to the host.

8. The host responds to the client with the current configuration options.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 28 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

9. The client passes the current configuration options through to the end-client.

4.1.1.3 Voucher Issuance

The following sequence diagram demonstrates the expected behavior when an end-client issues a voucher. If
the issuance of the voucher causes the supply of validation identifiers to fall below the required limits, the end-
client will request a new set of validation identifiers. This operation is shown in the sequence diagram.
However, it would only be performed if the supply of validation identifiers fell below the required limits.

1. The end-client notifies the client that a voucher has been issued.

2. The client passes the voucher issuance request through to the host.

3. The host acknowledges the voucher issuance request.

4. The client passes the acknowledgement through to the end-client.

5. The end-client determines that a new set of validation identifiers is needed.

6. The end-client requests a new set of validation identifiers from the client.

7. The client passes the request through to the host.

8. The host responds with a new set of validation identifiers.

9. The client passes the new set of validation identifiers through to the end-client.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 29
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.1.1.4 Voucher Redemption

The following sequence diagram demonstrates the expected behavior when an end-client redeems a voucher.

In this example, the host authorizes redemption of the voucher and the end-client redeems the voucher.
Alternatively, the host could have denied the redemption request by including a non-zero host exception code
in its response. Or, the end-client could have failed to redeem the voucher, in which case a non-zero end-client
exception code would have been reported.

Regardless of the outcome, once a redemption request has been made, the end-client must always report the
final results of the redemption request even if the request is denied, a host or end-client exception occurs, or
the authorizeVoucher response is never received.

1. The end-client sends a voucher redemption request to the client.

2. The client passes the voucher redemption request through to the host.

3. The host authorizes the redemption of the voucher.

4. The client passes the authorization through to the end-client.

5. The end-client redeems the voucher.

6. The end-client notifies the client that the voucher has been redeemed.

7. The client passes the redemption notification through to the host.

8. The host acknowledges the redemption notification to the client.

9. The client passes the acknowledgement through to the end-client.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 30 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.1.1.5 Voucher Redemption by Authorized Employees

The following sequence diagram demonstrates the expected behavior when an employee authorization is
required before a voucher can be redeemed at an end-client. For example, a supervisor authorization may be
required to redeem a large win voucher at a cashier terminal. In this example, the employee authorization
information is sufficient and the voucher is redeemed. If the host determined that the employee authorization
information was insufficient, the host would have included a non-zero host exception code in its response to
the voucher redemption request. Employee authorizations are an optional feature of this specification.

1. The end-client sends a voucher status request to the client.

2. The client passes the voucher status request to the host.

3. The host provides the voucher status information, which includes the employee authorization
requirements, to the client.

4. The client passes the voucher status information to the end-client.

5. The end-client collects the required employee authorizations.

6. The end-client sends a voucher redemption request, including the employee authorizations, to the
client.

7. The client passes the voucher redemption request through to the host.

8. The host authorizes the redemption of the voucher.

9. The client passes the authorization through to the end-client.

10. The end-client redeems the voucher.

11. The end-client notifies the client that the voucher has been redeemed.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 31
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

12. The client passes the redemption notification through to the host.

13. The host acknowledges the redemption notification to the client.

14. The client passes the acknowledgement through to the end-client.

4.1.2 Voucher States
A voucher transaction will transition through a series of states while it is being processed by an end-client. Not
all of these states are visible through the protocol. However, they are described here to provide guidance to
implementers. The following diagrams identify the voucher transaction states and the permitted transitions
that should be followed when implementing this specification.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 32 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.1.3 Validation Identifiers
Validation identifiers are provided to the end-clients by the host. With each validation identifier, the host also
provides a seed value.

• Validation identifiers MUST be 18-digit numeric values. Typically, the validation identifiers are printed
on the vouchers in human-readable and bar-code form.

• Seed values MUST be constructed from 0 (zero) to 20 (twenty) UTF-8 encoded characters in the
range U+0020 to U+007E (ASCII printable characters). The seed values are used to produce manual
authentication identifiers. The manual authentication identifiers are also printed on the vouchers and
can be used for offline validation of vouchers.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 33
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

The configuration information provided by the host includes a series of properties that are used by the end-
client to determine the number of validation identifiers to request from the host and to determine the
frequency at which new validation identifiers should be requested.

• The maxValIds property indicates the maximum number of unused validation identifiers that should
be stored by an end-client.

• The minLevelValIds property indicates the minimum number of unused validation identifiers stored
by the end-client before additional validation identifiers should be requested.

• The valIdListRefresh property indicates the maximum time period that unused validation
identifiers should be stored before new validation identifiers are requested.

• The valIdListLife property indicates the maximum time period before an end-client must stop
using the validation identifiers.

Any time that the number of unused validation identifiers stored by an end-client drops below
minLevelValIds, additional validation identifiers MUST be requested by the end-client. Similarly, if the
validation identifiers have been stored for a period of time that exceeds the valIdListRefresh or
valIdListLife limits, a new set of validation identifiers MUST be requested. In addition, when the end-client
first starts communicating with the host, whenever the end-client resumes communications after an outage,
and whenever voucher functionality is re-enabled after being disabled (that is, the allowVoucherIssue
property of the voucher configuration is changed from false to true), a new set of validation identifiers MUST
be requested.

When requesting validation identifiers, the number of validation identifiers requested by an end-client MUST
NOT cause the number of unused validation identifiers stored by the end-client to exceed maxValIds.

If the unused validation identifiers have been stored for a period of time that exceeds valIdListLife, the
validation identifiers MUST NOT be used to issue vouchers until the validation identifiers have been refreshed
by the host.

4.1.4 Manual Authentication Identifiers
A manual authentication identifier MUST, if possible, be printed on every voucher for cashable or promotional
credits produced by an end-client. And, when the printNonCashOffLine configuration property is set to true,
a manual authentication identifier MUST, if possible, be printed on every voucher for non-cashable credits.
The manual authentication identifier is derived from a 128-bit MD5 hash of the end-client identifier, validation
identifier, seed value, and voucher amount.

Operational circumstances may prevent the end-client from printing manual authentication identifiers. For
example, the operator might choose to configure the end-client to not print manual authentication identifiers.
If the end-client cannot print manual authentication identifiers, the end-client MUST NOT print vouchers
while offline. The end-client MUST behave as if the printOffLine configuration property was set to false.

The following procedure MUST be used to produce manual authentication identifiers.

1. Construct a 90-character string composed, from left to right, of:

a. End-client identifier (endClientId); 32 8-bit ASCII characters (U+0020 to U+007E) padded
right with zeros (U+0030).

b. Validation identifier; 18 8-bit numeric ASCII characters (U+0030 to U+0039).

c. Seed value; 20 8-bit UTF-8 encoded characters (U+0020 to U+007E) padded left with zeros
(U+0030).

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 34 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

d. Voucher amount represented in the minor unit of the base currency of the end-client with no
punctuation or currency symbols; 20 8-bit numeric ASCII characters (U+0030 to U+0039)
padded left with zeros (U+0030).

2. Convert all lower case ASCII characters (U+0061 to U+007A) in the composed string to upper case
ASCII characters (U+0041 to U+005A).

3. Produce a 128-bit MD5 hash value using the 90-character composed string as input.

4. Produce the manual authentication identifier by casting the 128-bit hash value into a 32-character
hexadecimal representation and converting all alphabetic characters to upper case (U+0041 to
U+005A).

The G2S protocol includes additional information about producing manual authentication identifiers.

4.1.5 End-Client Identifier
The endClientType and endClientId properties uniquely identify a specific end-client within a gaming
network. Client systems are responsible for identifying the end-client, determining the endClientType and
endClientId for the end-client, and communicating the endClientType and endClientId to the host system.
The host system is responsible for validating the endClientType and endClientId reported by client systems
and accurately processing requests based on that information.

If the host determines that the endClientType and/or endClientId is invalid and, thus, the host is not
permitted to process requests from the end-client, the host SHOULD respond with HTTP status code 409
“Conflict”.

4.1.6 Player Identifier
When vouchers are issued, they may be associated with a player. The end-client is responsible for identifying
the player, determining the player identifier for the player, and communicating the player identifier to the host
system.

The host MUST NOT report errors related to invalid player information when processing voucher issuance
requests. The host MUST make a best effort to accept voucher issuance requests even if the player information
is invalid. The host MAY report errors related to invalid player information when processing voucher
redemption requests (host exception code 6 Incorrect Player for Voucher).

When identifying a player, the end-client MUST include either (a) the playerId for the player or (b) the
idReaderType and idNumber of the ID presented by the player. Both sets of information MAY be included.

If both sets of information are included, the host SHOULD ignore the idReaderType and idNumber and only
use the playerId to identify the player. If only one set of information is included, the host MAY include the
other set of information in its response to the end-client. If neither set of information is included, the host
MUST simply ignore the player information.

4.1.7 Configuration Identifier
The configuration identifier (configurationId) is used to identify a specific set of voucher configuration
values. The host includes the configuration identifier with each set of voucher configuration values that it
sends to an end-client. The host also includes the configuration identifier in each response that it sends to an
end-client.

An end-client MUST compare the configuration identifiers received in responses to the configuration
identifier for the current set of voucher configuration values being used by the end-client. If the configuration
identifiers are different, the end-client MUST request a new set of voucher configuration values from the host.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 35
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

The end-client MUST also request a new set of WAT configuration values when it first initiates
communications with the host, whenever it resumes communications after an outage, and whenever it is re-
enabled after being disabled.

4.1.8 Transaction Identifier
Each voucher transaction (issuance or redemption) is assigned a transaction identifier (transactionId). The
end-client is responsible for assigning the transactionId to the transaction.

The transactionId MUST uniquely identify a specific voucher transaction for the end-client. The
combination of endClientType, endClientId, and transactionId MUST be unique. Provided that a
transactionId is unique to the end-client, the end-client MAY use whatever method it determines
appropriate to assign the transactionId.

The host system MUST use the transactionId to detect duplicate transactions coming from an end-client, as
well as updates to transactions. Since the transactionId is only unique to the end-client, the host system
MUST use the combination of endClientType, endClientId, and transactionId to uniquely identify
individual transactions.

The transactionId assigned to a voucher transaction is selected by the end-client when the transaction is first
initiated. The end-client is responsible for properly recording the transactionId and including it in any
subsequent requests related to the transaction. The host system is responsible for properly recording the
transactionId when the transaction is first reported and, subsequently, accurately detecting duplicates and
making appropriate updates based on the transactionId provided by the end-client.

4.1.9 Host Exception Code
The host exception code (hostException) is used by the host to report exceptions that may occur while
processing requests. A non-zero value indicates that an exception occurred and, typically, that the request was
not successful at the host. A value of 0 (zero) indicates that no exception occurred and that the request was
successful at the host. Individual resources may contain additional rules for reporting and handling specific
exception codes.

4.1.10 End-Client Exception Code
The end-client exception code (endClientException) is used by the end-client to report exceptions that may
occur while processing requests. A non-zero value indicates that an exception occurred and, typically, that the
request was not successful at the end-client. A value of 0 (zero) indicates that no exception occurred and that
the request was successful at the end-client. Individual resources may contain additional rules for reporting and
handling specific exception codes.

4.1.11 Employee Authorizations
Certain voucher redemptions may require authorization by an employee of the gaming operation. For example,
an employee authorization may be required when redeeming large-win vouchers. The number of employees
who must authorize a redemption is determined by the host and is communicated to the end-client through
requiredAuth sub-objects of the voucherStatus resource. The number of employees may vary depending on
the value of a voucher, the type of voucher, or other factors. For example, a host may require one employee
authorization for redemptions of large-win vouchers up to $10,000 and two authorizations when over $10,000.
Employee authorizations are reported in employeeAuth sub-objects of the redeemVoucher resource.

When multiple authorizations are required, different types of employees may be required for the different
authorizations. For example, when two authorizations are required, a supervisor and a manager may be

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 36 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

required to authorize the redemption. The types of employee required to authorize the redemption of a
voucher are communicated through job codes (jobCode). Employees may be assigned multiple job codes to
reflect the full range of authorizations that they may make. For example, an employee might be assigned a
“supervisor” job code and a “manager” job code; this would allow the employee to provide supervisor and
manager authorizations. Another employee might only be assigned a “cashier” job code.

Along with the list of job codes that are required to authorize a redemption, the host MAY also specify
authorization codes (authCode). Authorization codes allow the host to be more specific about the types of
authorizations that are required. For example, rather than just specifying that a supervisor and manager are
required to authorize a redemption, the host can specify that the supervisor must provide the first
authorization and that the manager must provide the second.

Some authorization codes are mandatory — that is, when the host specifies the authorization code, the end-
client MUST include the authorization code in the voucher redemption request along with the employee
identifier of the authorizing employee. For example, authorization code SSI_authLine1 is mandatory; when
authorization code SSI_authLine1 is specified by the host, the end-client must include authorization code
SSI_authLine1 in its redemption request along with the employee identifier of the authorizing employee.

Other authorization codes are optional — that is, when the host specifies the authorization code, the end-
client MAY take the action associated with the authorization code. If the action is taken, the end-client MUST
include the authorization code with the employee identifier of the authorizing employee in its redemption
request. For example, authorization code SSI_changeAmount is optional; when authorization code
SSI_changeAmount is specified by the host, the end-client may change the value of the voucher; if the value of
the voucher is changed, the end-client must include authorization code SSI_changeAmount in its redemption
request along with the employee identifier of the authorizing employee.

The host MAY specify more than one job code for each authorization code. To qualify to perform a specific
authorization, an employee must have at least one of the job codes specified for the authorization code. For
example, if the host specifies that a supervisor or a manager must perform a specific authorization, an
employee must have a supervisor or manager job code to perform the authorization. However, the end-client
MUST only include one employee authorization record per authorization code. For example, if the host
specifies that a supervisor or a manager must perform a specific authorization, the end-client must only
include one employee authorization record; that record must identify the supervisor or manager who
authorized the redemption.

See Table 6.3,t_authCodes Enumerations for a list of mandatory and optional authorization codes.

Thus, there are three types of authorizations that can be specified by the host. The processing requirements are
different for each type.

• Generic – No authorization code is specified by the host. The end-client MUST include an employee
authorization record in its redemption request for each job code specified by the host.

• Mandatory – A mandatory authorization code is specified by the host. The end-client MUST include
one and only one employee authorization record for each mandatory authorization code specified by
the host regardless of the number of job codes specified for the mandatory authorization code.

• Optional – An optional authorization code is specified by the host. The end-client MUST include one
and only one employee authorization record for each optional authorization code specified by the host
regardless of the number of job codes specified for the mandatory authorization code if the specific
action associated with the optional authorization code is taken. If the action is not taken, the end-
client MUST NOT include an employee authorization record for the optional authorization code.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 37
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.1.12 Optional Properties
In this specification, properties of objects and URIs are designated as either use: required or use:
optional.

When designated as use: required, the property MUST be included in the object or URI. If one or more
use: required properties of an object or URI is omitted, the object or URI MUST be considered syntactically
and semantically incorrect. In such cases, if the incorrect object is in a request, the recipient MUST respond
with exception code 98 Syntax or Semantic Error; if the incorrect object is in a response, the recipient
SHOULD log the error and attempt to notify the system operator; if the URI is incorrect, the recipient MUST
respond with HTTP status code 409 “Conflict”.

When designated as use: optional, the property MAY be omitted. If omitted, the recipient of the object or
URI MUST use the specified default value for the property as the value of the property. If no default value is
specified, the recipient MUST use the null (unknown) value as the value of the property. Individual resources
may contain additional rules for the handling of use: optional properties.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 38 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.2 GET voucherConfiguration Resource
This resource is used to request new voucher configuration settings from the host.

4.2.1 GET voucherConfiguration Properties
The following table identifies the properties for the voucherConfiguration resource when the HTTP GET
verb is used. The properties are appended to the resource URI in the query component of the HTTP request.

An end-client MUST request new voucher configuration settings when it first starts communicating with the
host, whenever it resumes communications after an outage, whenever the voucher functionality is re-enabled
after being disabled, and whenever a mismatch is detected between the configuration identifier reported by the
host and the current configuration identifier being used by the end-client. The end-client MAY request the
current voucher configuration settings at other times as well.

In such cases, the end-client MUST retry the request at the frequency specified in the timeToLive
configuration property (or, 30 seconds if no voucher configuration setting were ever received) until new
configuration settings are received. Until new configuration settings are received, the end-client MUST NOT
generate any other voucher-related requests.

If the request is successful — that is, the host is providing the voucher configuration to the end-client in the
response — the hostException property of the response MUST be set to 0 (zero). Otherwise, the
hostException property MUST be set to an appropriate non-zero value; all other optional properties of the
response MUST be omitted. If the request is not successful and an appropriate value for the configurationId
property cannot be determined by the host, the host MUST set the configurationId property to 0 (zero).

• If the end-client is unknown or invalid, the host MUST set the hostException property to 97
Unknown or Invalid End-Client.

• If the voucher configuration is not available for the end-client, the host MUST set the hostException
property to 20 Voucher Configuration Not Available.

Table 4.1 GET voucherConfiguration Resource

HTTP Method GET

Pathname /ssi/[ver]/voucherConfiguration

Request Content-Type application/json; charset=utf-8

Request Content None.

Response Content - Type application/json; charset=utf-8

Response Content voucherConfiguration Object.

Table 4.2 GET voucherConfiguration Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 39
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.2.2 voucherConfiguration Object
The following table identifies the properties of the voucherConfiguration Object. Additional properties
MAY be included in the object.

• The currencyCode property identifies the currency in which voucher transactions are denominated. If
the currency specified by the host does not match the currency in which the end-client operates, the
end-client MUST NOT initiate voucher issuance or redemption transactions with the host.

• The timeToLive property indicates the minimum amount of time that the end-client should wait
before retrying a request. To retry a request, it may be necessary to terminate and then re-establish the
HTTP connection to the host.

• The noAckTimer property is used to determine whether voucher processing services are offline. When
the end-client issues a voucher, the end-client MUST start a timer using the value of the noAckTimer
property. If the timer expires before the host acknowledges issuance of the voucher, the end-client
MUST consider voucher processing services to be offline. Once all issued vouchers have been
acknowledged by the host, the end-client MUST consider voucher processing services to be online
again.

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

Table 4.3 voucherConfiguration Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

currencyCode type:t_currencyCode
use: optional
default: XXX

Currency Code; the currency in which
transactions are denominated.

Example, "EUR".

timeToLive type: t_milliseconds
use: optional
default: 30000

Time-to-live value for voucher-related
requests generated by the end-client.

Example, "30000".

combineCashableOut type: boolean
use: optional
default: true

Indicates whether promotional credits are
converted to cashable credits when issuing
vouchers.

Example, "true".

Table 4.2 GET voucherConfiguration Properties (Continued)

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 40 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

allowNonCashOut type: boolean
use: optional
default: false

Indicates whether the end-client is allowed to
issue vouchers for non-cashable credits.

Example, "false".

maxValIds type: numeric
mode: integer
use: optional
default: 15
minimum: 1

Maximum number of validation identifiers
stored by the end-client.

Example, "15".

minLevelValIds type: numeric
mode: integer
use: optional
default: 10
minimum: 0

Minimum number of validation identifiers
stored by the end-client before additional
validation identifiers are requested.

Example, "10".

validListRefresh type: t_milliseconds
use: optional
default: 43200000

Maximum time period after validation
identifiers have been refreshed before new
validation identifiers are requested.

Example, "43200000".

validListLife type: t_milliseconds
use: optional
default: 86400000

Maximum time period after validation
identifiers have been refreshed before the
end-client must stop using the validation
identifiers.

Example, "86400000".

voucherHoldTime type: t_milliseconds
use: optional
default: 15000

Maximum time period that the end-client
should wait for a host authorization before
returning a voucher.

Example, "15000".

printOffLine type: boolean
use: optional
default: true

Indicates whether the end-client is allowed to
issue vouchers while communications to the
host are offline.

Example, "true".

expireCashPromo type: numeric
mode: integer
use: optional
default: 30
minimum: 0

Number of days before vouchers for cashable
and promotional credits expire.

Example, "30".

printExpCashPromo type: boolean
use: optional
default: true

Indicates whether expiration dates should be
printed on vouchers for cashable and
promotional credits.

Example, "true".

Table 4.3 voucherConfiguration Object Properties (Continued)

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 41
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

expireNonCash type: numeric
mode: integer
use: optional
default: 30
minimum: 0

Number of days before vouchers for non-
cashable credits expire.

Example, "30".

printExpNonCash type: boolean
use: optional
default: true

Indicates whether expiration dates should be
printed on vouchers for non-cashable credits.

Example, "true".

propName type: t_voucherTitle40
use: optional
default: <empty>

Name of the property.

Example, "ABC Casino".

propLine1 type: t_voucherTitle40
use: optional
default: <empty>

First address line for the property.

Example, "1 Casino Way".

propLine2 type: t_voucherTitle40
use: optional
default: <empty>

Second address line for the property.

Example, "Anywhere, USA".

titleCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for cashable credits.

Example, "CASHOUT VOUCHER".

titlePromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional
credits; if <empty>, use titleCash.

Example, "CASHOUT VOUCHER".

titleNonCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for non-cashable
credits.

Example, "PLAYABLE ONLY".

titleLargeWin type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for wins greater
than the large win limit for the client.

Example "JACKPOT VOUCHER".

titleShortPay type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for issued as a result
of short pays.

Example "SHORT PAY".

titleBonusCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for cashable credits
resulting from external bonus awards.

Example, "CASHOUT VOUCHER".

titleBonusPromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional
credits resulting from external bonus awards;
if <empty>, use titleBonusCash.

Example, "CASHOUT VOUCHER".

Table 4.3 voucherConfiguration Object Properties (Continued)

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 42 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

titleBonusNonCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for non-cashable
credits resulting from external bonus awards.

Example, "PLAYABLE ONLY".

titleWatCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for cashable credits
resulting from wagering account transfers.

Example, "CASHOUT VOUCHER".

titleWatPromo type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional
credits resulting from wagering account
transfers; if <empty>, use titleWatCash.

Example, "CASHOUT VOUCHER".

titleWatNonCash type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for non-cashable
credits resulting from wagering account
transfers.

Example, "PLAYABLE ONLY".

allowVoucherIssue type: boolean
use: optional
default: true

Indicates whether the end-client should
request validation identifiers, thus, enabling
voucher issuance functionality.

Example, "true".

allowVoucherRedeem type: boolean
use: optional
default: true

Indicates whether the end-client should
enable voucher redemption functionality.

Example, "true".

maxOnLinePayOut type: t_millicents
use: optional
default: 0

Maximum amount that can be paid by
voucher while communications are not
offline; 0 (zero) indicates that there is no limit.

Example, "0".

maxOffLinePayOut type: t_millicents
use: optional
default: 0

Maximum amount that can be paid by
voucher while communications are offline; 0
(zero) indicates that there is no limit.

Example, "1000000000".

printNonCashOffLine type: boolean
use: optional
default: false

Indicates whether vouchers for non-cashable
credits can be issued while communications
are lost; both printOffLine and
allowNonCashOut must also be set to true for
vouchers for non-cashable credits to be
printed while communications are lost.

Example, "false".

Table 4.3 voucherConfiguration Object Properties (Continued)

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 43
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.2.3 GET voucherConfiguration Example — Successful
The following example demonstrates the construction of a successful GET voucherConfiguration request
and a response containing a voucherConfiguration object. In practice, additional HTTP headers may be
included in the message.

Request:

GET /ssi/1.1/voucherConfiguration?endClientType=SSI_kiosk&endClientId=ABC_123 HTTP/1.1
Accept: application/json
Accept-Charset: utf-8

Response:

HTTP/1.1 200 OK
Content-Length: 1014
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"timeToLive": 15000,
"combineCashableOut": true,
"allowNonCashOut": false,
"maxValIds": 15,
"minLevelValIds": 10,
"valIdListRefresh": 43200000,
"valIdListLife": 86400000,
"voucherHoldTime": 15000,
"printOffLine": true,
"expireCashPromo": 30,
"printExpCashPromo": true,
"expireNonCash": 30,
"printExpNonCash": true,
"propName": "ABC Casino",
"propLine1": "1 Casino Way",
"propLine2": "Anywhere, USA",
"titleCash": "CASHOUT VOUCHER",
"titlePromo": "CASHOUT VOUCHER",
"titleNonCash": "PLAYABLE ONLY",
"titleLargeWin": "JACKPOT VOUCHER",

noAckTimer type: t_milliseconds
use: optional
default: 15000

The maximum time between when a voucher
is issued and when it is acknowledged before
the validation system is declared offline.

Example, "15000".

hostException type: t_voucherHostExceptions
use: optional
default: 0

Host exception code; 0 (zero) if request was
successful.

Example, "0".

Table 4.3 voucherConfiguration Object Properties (Continued)

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 44 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

"titleShortPay": "SHORT PAY",
"titleBonusCash": "CASHOUT VOUCHER",
"titleBonusPromo": "CASHOUT VOUCHER",
"titleBonusNonCash": "PLAYABLE ONLY",
"titleWatCash": "CASHOUT VOUCHER",
"titleWatPromo": "CASHOUT VOUCHER",
"titleWatNonCash": "PLAYABLE ONLY",
"allowVoucherIssue": true,
"allowVoucherRedeem": true,
"maxOnLinePayOut": 0,
"maxOffLinePayOut": 1000000000,
"printNonCashOffLine": false,
"noAckTimer": 15000,
"hostException": 0

}

4.2.4 Get voucherConfiguration Example — Not Successful
The following example demonstrates the construction of an unsuccessful GET voucherConfiguration
request and a response containing a voucherConfiguration object. In practice, additional HTTP headers may
be included in the message.

Request:

GET /ssi/1.1/voucherConfiguration?endClientType=SSI_kiosk&endClientId=ABC_123 HTTP/1.1
Accept: application/json
Accept-Charset: utf-8

Response:

HTTP/1.1 200 OK
Content-Length: 75
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 0,
"hostException": 20

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 45
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.3 GET validationResource
This resource is used to request a new set of validation identifiers from the host.

All vouchers that have been issued by an end-client MUST be acknowledged by the host before any requests
for new validation identifiers are generated by the end-client.

Provided that all vouchers issued by the end-client have been acknowledged, the end-client MUST request new
validation identifiers under the following circumstances:

• When the number of validation identifiers stored for the end-client falls below the minLevelValIds
limit,

• When the valIdListRefresh or valIdListLife time period expires, or

• When the voucher functionality is re-enabled after being disabled (that is, the allowVoucherIssue
configuration property is changed from false to true).

Once the end-client has determined that the validation identifiers need to be refreshed, the end-client MUST
retry the request at the frequency specified in the timeToLive configuration property until new validation
identifiers are received.

If the valIdListLife time period has expired or the end-client has never received any validation identifiers,
the end-client MUST set the valIdListExpired property of the request to true; otherwise, the
valIdListExpired property MUST be set to false.

Provided that the valIdListLife time period has not expired, the end-client may continue to issue vouchers
until all available validation identifiers have been consumed. However, after the voucher functionality is re-
enabled after being disabled (that is, the allowVoucherIssue configuration property is changed from false to
true), the end-client MUST NOT issue any vouchers until the validation identifiers have been refreshed – that
is, the end-client MUST treat the existing validation identifiers as if the valIdListLife time period had
expired.

The numValidationIds property MUST be set to the difference between the value of the maxValIds
configuration property and the number of unused validation identifiers remaining at the end-client, but not less
than 0 (zero).

The validationListId property MUST be set to the value of the validationListId property received with
the last set of validation identifiers (if no validation identifiers were ever received, MUST be set to 0 (zero)).

The end-client MUST NOT request validation identifiers and, thus, MUST NOT issue vouchers if the
allowVoucherIssue configuration property is set to false.

If the request is successful — that is, the host is providing the validation identifiers to the end-client in the
response — the hostException property of the response MUST be set to 0 (zero). Otherwise, the
hostException property MUST be set to an appropriate non-zero value; all other optional properties of the
response MUST be omitted; the configurationId and validationListId properties MUST be set to the
corresponding values received in the request.

• If the end-client is unknown or invalid, the host MUST set the hostException property to 97
Unknown or Invalid End-Client.

• If the voucher configuration is not correct, the host MUST set the hostException property to 21
Incorrect Voucher Configuration.

Table 4.4 GET validationIdList Resource

HTTP Method GET

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 46 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.3.1 Get validationIdList Properties
The following table identifies the properties for the validationIdList resource when the HTTP GET verb is
used. The properties are appended to the resource URI in the query component of the HTTP request.

Pathname /ssi/[ver]/validationIdList

Request Content-Type application/json; charset=utf-8

Request Content None.

Response Content - Type application/json; charset=utf-8

Response Content validationIdList Object.

Table 4.5 GET validationList Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813"

validationListId type:
t_validationListId
use: required

Validation List Identifier; the validationListId
received in the last validationIdList object received
by the client; set to 0 (zero) if no such object has been
received.

Example, “13471118”.

numValidationIds type: numeric
mode: integer
use: required
minimum: 0

The number of validation identifiers required to
restore the number of available validation identifiers to
the maxValIds level, but not less than 0 (zero).

Example, "5".

validListExpired type: boolean
use: required

Indicates whether the valIdListLife time period is
considered to have expired; set to true if no validation
identifiers have ever been received by the end-client.

Example, "false".

Table 4.4 GET validationIdList Resource

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 47
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.3.2 validationIdList Object
The following table identifies the properties of the validationIdList Object. Additional properties MAY be
included in the object.

The host can use the deleteCurrent property to indicate that all unused validation identifiers should be
discarded before adding the new validation identifiers.

If the deleteCurrent property is set to false, the host MUST include the number of validation identifiers
specified in the numValidationIds property of the request. If the deleteCurrent property is set to true, the
host MUST include the number of validation identifiers specified in the maxValIds configuration parameter.

If the deleteCurrent property is set to true, all unused validation identifiers MUST be discarded by the end-
client. If the deleteCurrent property is set to false, all unused validation identifiers MUST be retained by the
end-client.

Validation identifiers MUST be consumed by the end-client in the order provided. Any new validation
identifiers MUST be consumed after any validation identifiers retained by the end-client. If any validation
identifiers are duplicates of those retained by the end-client, the ordering of the validation identifiers MUST
NOT be changed, however, the seed values associated with the validation identifiers MUST be updated.

After successfully recording a new set of validation identifiers, the end-client MUST restart any timers
associated with the valIdsListRefresh and valIdsListLife configuration properties.

If any of the new validation identifiers or seed values cannot be used – for example, a validation identifier
includes non-numeric characters – the entire new set of validation identifiers MUST NOT be used. In such
cases, the end-client SHOULD, if possible, use its local error reporting mechanisms to try to bring the problem
to the operator’s attention.

Table 4.6 validationIdList Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

validationListId type: t_validationListId
use: required

Validation List Identifier; host-assigned identifier
for the set of validation identifiers.

Example, "13471118".

deleteCurrent type: boolean
use: optional
default: false

Indicates whether all remaining validation
identifiers stored by the client should be
discarded.

Example, "false".

validationIdArray type: array
use: optional
minItems: 0
maxItems: ∞

An array of validationId objects. See
Table 4.7,validationId Object Properties for
details.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 48 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.3.3 GET validationIdList Example — Successful
The following example demonstrates the construction of a successful GET validationIdList request and a
response containing a validationIdList object. In practice, additional HTTP headers may be included in the
message.

Request:

GET /ssi/1.1/validationIdList?endClientType=SSI_kiosk&endClientId=ABC_123
&configurationId=1235813&validationListId=1347118
&numValidationIds=5&valIdListExpired=false HTTP/1.1

Accept: application/json
Accept-Charset: utf-8

Response:

HTTP/1.1 200 OK
Content-Length: 537
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"validationListId": 13471119,
"deleteCurrent": false,
"validationIdArray": [

{
"validationId": "012345678901234567",
"validationSeed": "1A2B3C4D5E6F7081"

},
{

hostException type: t_voucherHostExceptions
use: optional
default: 0

Host exception code; 0 (zero) if request was
successful.

Example, “0”.

Table 4.7 validationId Object Properties

Property Restrictions Description

validationId type: t_validationId
use: required

Validation Identifier.

Example, "012345678901234567".

validationSeed type: t_validationSeed
use: optional
default: <empty>

Manual authentication seed value.

Example, "1A2B3C4D5E6F7081".

Table 4.6 validationIdList Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 49
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

"validationId": "012345678901234568",
"validationSeed": "1A2B3C4D5E6F7081"

},
{

"validationId": "012345678901234569",
"validationSeed": "1A2B3C4D5E6F7081"

},
{

"validationId": "012345678901234570",
"validationSeed": "1A2B3C4D5E6F7081"

},
{

"validationId": "012345678901234571",
"validationSeed": "1A2B3C4D5E6F7081"

}
]

}

4.3.4 GET validationIdList Example — Not Successful
The following example demonstrates the construction of an unsuccessful GET validationIdList request
and a response containing a validationIdList object. In practice, additional HTTP headers may be included
in the message.

Request:

GET /ssi/1.1/validationIdList?endClientType=SSI_kiosk&endClientId=ABC_123
&configurationId=1235813&validationListId=1347118
&numValidationIds=5&valIdListExpired=false HTTP/1.1

Accept: application/json
Accept-Charset: utf-8

Response:

HTTP/1.1 200 OK
Content-Length: 131
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"validationListId": 13471119,
"hostException": 21

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 50 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.4 POST issueVoucher Resource
This resource is used to report to the host that a new voucher has been issued.

4.4.1 issueVoucher Object
The following table identifies the properties of the issueVoucher Object. Additional properties MAY be
included in the object.

The end-client should report that a voucher has been issued as soon as the end-client is irreversibly committed
to the voucher issuance operation and the associated credits have been removed from the credit meter. The
end-client should not wait until the final results of the print operation are known. Waiting for the final results
of the print operation could cause significant delays in reporting that the voucher issuance operation had taken
place. Presentation errors MAY be reported by setting the endClientException property to 1 (one). However,
reporting such errors SHOULD NOT delay the reporting of the voucher issuance operation.

The end-client MUST retry the issueVoucher request at the frequency set in the timeToLive configuration
property until the voucher issuance is acknowledged by the host.

When issuing vouchers for non-cashable credits, the following rules MUST be applied:

• If the allowNonCashOut configuration property is set to true:

• If there is no expiration associated with the non-cashable credits, the end-client MUST
produce the voucher for the non-cashable credits and the expireNonCash configuration
property MUST be used to determine the expiration period for the voucher (not the
expiration date/time for the non-cashable credits).

• If there is an expiration associated with the non-cashable credits and the current date/time is
the same as or prior to that expiration, the end-client MUST produce the voucher for the
non-cashable credits.

• If there is an expiration associated with the non-cashable credits and the current date/time is
after that expiration, the end-client MUST NOT produce a voucher for the non-cashable
credits.

• If the allowNonCashOut configuration property is set to false, the end-client MUST NOT produce a
voucher for the non-cashable credits.

When the combineCashableOut configuration property is set to true, the end-client MUST convert any
promotional credits to cashable credits when issuing a voucher — a single combined voucher for cashable
credits MUST be issued. When the combineCashableOut configuration attribute is set to false, the end-client

Table 4.8 POST issueVoucher Resource

HTTP Method POST

Pathname /ssi/[ver]/issueVoucher

Request Content-Type application/json; charset=utf-8

Request Content issueVoucher Object.

Response Content - Type application/json; charset=utf-8

Response Content issueVoucherAck Object.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 51
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

MUST NOT convert promotional credits to cashable credits when issuing a voucher — when necessary,
separate vouchers for cashable and promotional credits MUST be issued.

If the voucher was issued as a partial payment because the end-client could not fully redeem another voucher,
the end-client MUST set the shortPay property to true; otherwise, the shortPay property MUST be set to
false. For example, if a disbursement error occurs at a redemption kiosk and, as a result, the kiosk only partially
redeems a voucher, issuing a new voucher for the remaining balance, the kiosk must set the shortPay property
for the new voucher to true.

An issueVoucher request is considered logically equivalent to a previous issueVoucher request if the host
detects that the transactionId associated with the request was reported in a previous issueVoucher request
for the same end-client. In such cases, the host MUST generate a logically equivalent issueVoucherAck
response.

The host SHOULD also verify that the validationId has not been reported in a previous issueVoucher
request. If the validationId has been previously reported, but with a different transactionId, the host
SHOULD, if possible, use its local error reporting mechanisms to try to bring the problem to the operator’s
attention.

The host MUST make a best effort to acknowledge an issueVoucher request. Failure to acknowledge an
issueVoucher request will cause the end-client to retry the issueVoucher request indefinitely and may lead to
a loss of voucher-related functionality. Host exception 21 Incorrect Voucher Configuration MUST NOT
be reported in response an issueVoucher request. If the request is not successful, the configurationId,
transactionId, and validationId properties MUST be set to the corresponding values received in the
request.

Table 4.9 issueVoucher Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591423".

idReaderType type: t_idReaderTypes
use: optional
default: SSI_none

ID reader type.

Example, "SSI_magCard".

idNumber type: t_idNumber
use: optional
default: <empty>

ID number.

Example, "09900101977".

playerId type: t_playerId
use: optional
default: <empty>

Player account identifier.

Example, "00101977".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 52 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

voucherAmt type: t_millicents
use: required

Voucher amount.

Example, "12345000".

creditType type: t_creditTypes
use: required

Credit Type.

Example, "SSI_cashable".

voucherSource type: t_voucherSources
use: required

Voucher source; set to SSI_endClient.

Example, "SSI_endClient".

largeWin type: boolean
use: required

Indicates whether the voucher was issued
because the amount won exceeded the end-
client's large win limit.

Example, "false".

shortPay type: boolean
use: required

Indicates whether the voucher was issued
because the end-client could not fully
redeem another voucher.

Example, "false".

voucherSequence type: numeric
mode: integer
use: required
minimum: 0

The issuing end-client's internal voucher
sequence number; printed on the voucher.

Example, "123".

expireCredits type: boolean
use: required

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
SSI_nonCashable.

Example, "false".

expireDateTime type: string
use: required
format: date-time

Expiration date/time associated with non-
cashable credits; ignored when creditType
is not set to SSI_nonCashable or
expireCredits is set to false.

Example, "2001-01-01T00:00:00-00:00".

transferAmt type: t_millicents
use: required

Transfer amount; in most cases, set to
voucherAmt. MAY be set to 0 (zero) if an
exception occurred while generating the
voucher and no funds were transferred
from the end-client.

Example, "12345000".

transferDateTime type: string
use: required
format: date-time

Date/time that the transaction took place.

Example, "2016-03-31T17:11:28-05:00".

Table 4.9 issueVoucher Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 53
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.4.2 issueVoucherAck Object
The following table identifies the properties of the issueVoucherAck Object. Additional properties MAY be
included in the object.

expireDays type: numeric
mode: integer
use: required
minimum: 0

Number of days before the voucher expires;
ignored if expireCredits is set to true; -1
(negative one) indicates that there is no
expiration period.

Example, "30".

endClientAction type: t_voucherClientActions
use: required

Action taken by the end-client; set to
SSI_issued.

Example, "SSI_issued".

endClientException type: t_voucherClientExceptions
use: required

End-client exception code.

Example, "0".

Table 4.10 issueVoucherAck Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591423".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

hostException type: t_voucherHostExceptions
use: optional
default: 0

Host exception code; 0 (zero) if request was
successful.

Example, "0".

Table 4.9 issueVoucher Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 54 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.4.3 POST issueVoucher Example — Successful
The following example demonstrates the construction of a successful POST issueVoucher request containing
a issueVoucher object and a response containing a issueVoucherAck object. In practice, additional HTTP
headers may be included in the message.

Request:
POST /ssi/1.1/issueVoucher HTTP/1.1
Content-Length: 561
Content-Type: application/json; charset=utf-8
Accept: application/json
Accept-Charset: utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591423,
"idReaderType": "SSI_magCard",
"idNumber": "09900101977",
"playerId": "00101977",
"validationId": "012345678901234567",
"voucherAmt": 12345000,
"creditType": "SSI_cashable",
"voucherSource": "SSI_endClient",
"largeWin": false,
"shortPay": false,
"voucherSequence": 123,
"expireCredits": false,
"expireDateTime": "",
"transferAmt": 12345000,
"transferDateTime": "2016-03-31T17:11:28-05:00",
"expireDays": 30,
"endClientAction": "SSI_issued",
"endClientException": 0

}

Response:
HTTP/1.1 200 OK
Content-Length: 108
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591423,
"validationId": "012345678901234567"

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 55
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.5 GET voucherStatus Resource
This resource is used to request the current status of a voucher from the host. Typically, the resource is only
used when the host requires employee authorizations for certain types of vouchers. The list of required
employee authorizations for a voucher is included with the voucher status information. The resource may be
used for other purposes as well.

4.5.1 GET voucherStatus Properties
The following table identifies the properties for the voucherStatus resource when the HTTP GET verb is
used. The properties are appended to the resource URI in the query component of the HTTP request.

If the request is successful – that is, the host is providing voucher status information to the end-client in the
response – the hostException property of the response MUST be set to 0 (zero). Otherwise, the
hostException property MUST be set to an appropriate non-zero value; all other optional properties of the
response MUST be omitted; the configurationId and validationId properties MUST be set to the
corresponding values received in the request.

• If the end-client is unknown or invalid, the host MUST set the hostException property to 97 Unknown
or Invalid End-Client.

• If the voucher configuration is not correct, the host MUST set the hostException property to 21
Incorrect Voucher Configuration.

• If the validationId is unknown or invalid, the host MUST set the hostException property to 4
Voucher Not Found.

Table 4.11 GET voucherStatus Resource

HTTP Method GET

Pathname /ssi/[ver]/voucherStatus

Request Content-Type application/json; charset=utf-8

Request Content None.

Response Content-Type application/json; charset=utf-8

Response Content voucherStatus Object.

Table 4.12 GET voucherStatus Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 56 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.5.2 voucherStatus Object
The following table identifies the properties of the voucherStatus Object. Additional properties MAY be
included in the object.

• The voucherStatus property identifies the current state of the voucher. Vouchers in the
SSI_issueAcked state are eligible for redemption.

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

Table 4.13 voucherStatus Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

voucherStatus type: t_voucherStates
use: optional
default: SSI_issueAcked

Voucher status.

Example, "SSI_issueAcked".

voucherAmt type: t_millicents
use: optional
default: 0

Voucher amount.

Example, "12345000".

creditType type: t_creditTypes
use: optional
default: SSI_cashable

Credit Type.

Example, "SSI_cashable".

voucherSource type: t_voucherSources
use: optional
default: SSI_endClient

Voucher source; set to SSI_endClient.

Example, "SSI_endClient".

largeWin type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client’s large win limit.

Example, "false’.

Table 4.12 GET voucherStatus Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 57
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

shortPay type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the end-client could not fully redeem
another voucher.

Example, "false".

voucherSequence type: numeric
mode: integer
use: optional
default: 0
minimum: 0

The issuing end-client’s internal voucher
sequence number; printed on the voucher.

Example, "123".

expireCredits type: boolean
use: optional
default: false

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
SSI_nonCashable.

Example, "false".

expireDateTime type: string
use: optional
default: <empty>
format: date-time

Expiration date/time associated with non-
cashable credits; ignored when creditType is
not set to SSI_nonCashable or
expireCredits is set to false.

Example, "2001-01-01T00:00:00-00:00".

requiredAuthArray type: array
use: optional
minItems: 0
maxItems: ∞

An array of requiredAuth objects. See
Table 4.14,requiredAuth Object Properties
for details.

hostException type: t_voucherHostExceptions
use: optional
default: 0

Host exception code; 0 (zero) if request was
successful.

Example, "0".

Table 4.14 requiredAuth Object Properties

Property Restrictions Description

authCode type: t_authCodes
use: optional
default: <empty>

Authorization code.

Example, "SSI_authLine1".

authName type: t_voucherTitle40
use: optional
default: <empty>

Authorization title.

Example, "Authorization 1".

jobCode type: t_jobCode
use: required

Job code.

For example, "manager".

jobName type: t_voucherTitle40
use: optional
default: <empty>

Job title.

For example, "Manager or Above".

Table 4.13 voucherStatus Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 58 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.5.3 GET voucherStatus Example — Successful
The following example demonstrates the construction of a successful GET voucherStatus request and a
response containing a voucherStatus object. In practice, additional HTTP headers may be included in the
message.

In this example, the end-client is required to provide a generic employee authorization by an “attendant”. If the
value of the voucher is changed, an optional employee authorization by a “supervisor” or “manager” is also
required.

Request:
GET /ssi/1.1/voucherStatus?endClientType=SSI_kiosk&endClientId=ABC_123

&configurationId=1235813&validationId=012345678901234567 HTTP/1.1
Accept: application/json
Accept-Charset: utf-8

Response:
HTTP/1.1 200 OK
Content-Length: 686
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"validationId": "012345678901234567",
"voucherStatus": "SSI_issueAcked",
"voucherAmt": 12345000,
"creditType": "SSI_cashable",
"voucherSource": "SSI_endClient",
"largeWin": false,
"shortPay": false,
"voucherSequence": 123,
"expireCredits": false,
"expireDateTime": "",
"requiredAuthArray": [

{
"authCode": "",
"authName": "",
"jobCode": "attendant",
"jobName": "Attendant"

},
{

"authCode": "SSI_changeAmt",
"authName": "Change Voucher Amount",
"jobCode": "supervisor",
"jobName": "Supervisor or Above"

},
{

"authCode": "SSI_changeAmt",
"authName": "Change Voucher Amount",
"jobCode": "manager",
"jobName": "Manager or Above"

}
]

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 59
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.5.4 GET voucherStatus Example — Not Successful
The following example demonstrates the construction of an unsuccessful GET voucherStatus request and a
response containing a voucherStatus object. In practice, additional HTTP headers may be included in the
message.

Request:
GET /ssi/1.1/voucherStatus?endClientType=SSI_kiosk&endClientId=ABC_123

&configurationId=1235813&validationId=012345678901234567 HTTP/1.1
Accept: application/json
Accept-Charset: utf-8

Response:
HTTP/1.1 200 OK
Content-Length: 139
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"validationId": "012345678901234567",
"hostException": 22

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 60 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.6 POST redeemVoucher Resource
This resource is used to request authorization from the host to redeem a voucher.

4.6.1 redeemVoucher Object
The following table identifies the properties of the redeemVoucher Object. Additional properties MAY be
included in the object.

If the request is not authorized within the time period specified in the voucherHoldTime configuration
property, the end-client MUST return the voucher and generate a commitVoucher request indicating that the
voucher was returned due to a timeout (endClientException = "5"). If an authorizeVoucher response is
received after the voucher has been returned (or, in general, at any time a voucher is not being held in escrow),
the end-client MUST simply ignore the authorizeVoucher response.

While waiting for the voucherHoldTime to expire, the end-client MUST make a best effort to retry the
redeemVoucher request at the frequency set in the timeToLive configuration property until a valid
authorizeVoucher response is received.

After generating a redeemVoucher request and the voucher has stacked or returned, the end-client MUST
always generate a commitVoucher request to report the final disposition of the voucher redemption request.
Even if the end-client does not receive an authorizeVoucher response or receives an exception in response to
the redeemVoucher request, the end-client MUST still generate a commitVoucher request for the host to
confirm the outcome of the redemption request.

When the allowVoucherRedeem configuration property is set to false, the end-client MUST NOT generate any
redeemVoucher requests.

If the request is successful — that is, the host is authorizing redemption of the voucher in the response — the
hostException property of the response MUST be set to 0 (zero). Otherwise, the hostException property
MUST be set to an appropriate non-zero value; all other optional properties of the response MUST be
omitted; the configurationId, transactionId, and validationId properties MUST be set to the
corresponding values received in the request.

• If the end-client is unknown or invalid, the host MUST set the hostException property to 97
Unknown or Invalid End-Client.

• If the voucher configuration is not correct, the host MUST set the hostException property to 21
Incorrect Voucher Configuration.

Table 4.15 POST redeemVoucher Resource

HTTP Method POST

Pathname /ssi/[ver]/redeemVoucher

Request Content-Type application/json; charset=utf-8

Request Content redeemVoucher Object.

Response Content-Type application/json; charset=utf-8

Response Content authorizeVoucher Object.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 61
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

• If the host determines that redemption of the voucher is already in process at another end-client, the
host MUST set the hostException property to 1 Redemption in Process at Another End-Client.

• If the host determines that the voucher has already been redeemed, the host MUST set the
hostException property to 2 Voucher Already Redeemed.

• If the host determines that the voucher has expired, the host MUST set the hostException property
to 3 Voucher Expired.

• If the validationId is unknown or invalid, the host MUST set the hostException property to 4
Voucher Not Found.

• If the host determines that the voucher cannot be redeemed at the end-client, the host MUST set the
hostException property to 5 Voucher Cannot Be Redeemed at This End-Client.

• If the host determines that the specified player is incorrect for the voucher, the host MUST set the
hostException property to 6 Incorrect Player for Voucher.

A redeemVoucher request is considered logically equivalent to a previous redeemVoucher request if the host
detects that the transactionId associated with the redemption request was reported in a previous
redeemVoucher or commitVoucher request for the same end-client. In such cases, the host MUST generate a
logically equivalent authorizeVoucher response.

Table 4.16 redeemVoucher Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591424".

idReaderType type: t_idReaderTypes
use: optional
default: SSI_none

ID reader type.

Example, "SSI_magCard".

idNumber type: t_idNumber
use: optional
default: <empty>

ID number.

Example, "09900101977".

playerId type: t_playerId
use: optional
default: <empty>

Player account identifier.

Example, "00101977".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

employeeAuthArray type: array
use: optional
minItems: 0
maxItems: ∞

An array of employeeAuth objects. See
Table 4.17,employeeAuth Object Properties for
details.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 62 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.6.2 authorizeVoucher Object
The following table identifies the properties of the authorizeVoucher Object. Additional properties MAY be
included in the object.

To authorize the redemption of a voucher, the host MUST set the voucherAmt to a non-zero value and MUST
set the hostException property to 0 (zero). And, the creditType, voucherSource, largeWin, shortPay,
voucherSequence, expireCredits, and expireDateTime properties MUST be set to the semantically correct
values for the voucher being redeemed.

To deny redemption of a voucher, the host MUST set the voucherAmt to 0 (zero) and MUST set the
hostException property to a non-zero value indicating the reason for denial. In such cases, the creditType,
voucherSource, largeWin, shortPay, voucherSequence, expireCredits, and expireDateTime properties
MUST be omitted or set to their default values.

The host can set the voucherSource property to SSI_system to indicate that the voucher was issued by the
system (typically, for promotional purposes) or SSI_endClient to indicate the voucher was issued by an end-
client, such as an EGM or kiosk. This feature can be used in jurisdictions where the expense for end-client-
issued vouchers is deducted at the time of redemption. In such situations, system-issued vouchers are not
deductible and, therefore, are accounted for separately from end-client-issued vouchers. In jurisdictions where
this is not an issue, all vouchers can be redeemed and accounted for as end-client-issued vouchers.

The host may use the hostAction property to force an end-client to stack a voucher that is not valid or to
force an end-client to return the voucher following a valid redemption. If the host authorizes redemption and
the end-client is unable to redeem the voucher for any reason, the end-client MUST return the voucher
regardless of the hostAction value. The host should use this attribute with extreme caution. The hostAction
property may be set to one of three values:

• SSI_endClientAction tells the end-client to perform its normal action of stacking or returning a
voucher; for example, stacking a redeemed voucher and returning all others.

• SSI_stack tells the end-client to stack a voucher following successful completion of the
authorizeVoucher response.

• If the host does not authorize redemption (i.e. hostException is set to a non-zero value), the
end-client MUST still stack the voucher, if possible.

• If the host authorizes redemption of the voucher and the end-client is unable to stack the
voucher for any reason, the end-client MUST NOT redeem the voucher.

Table 4.17 employeeAuth Object Properties

Property Restrictions Description

authCode type: t_authCodes
use: optional
default: <empty>

Authorization code.

Example, "SSI_authLine1".

jobCode type: t_jobCode
use: required

Job code.

employeeId type: t_employeeId
use: required

Employee identifier.

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 63
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

• If the host authorizes redemption of the voucher and the end-client is unable to redeem the
voucher for any reason, the end-client MUST NOT stack the voucher.

• SSI_return tells the end-client to return the voucher regardless of whether it was successfully
redeemed or not. If hostAction is set to SSI_return, the end-client MUST NOT stack the voucher
under any circumstances.

When a voucher redemption is authorized, the host MUST record that a redemption request is pending for the
voucher. Until a commitVoucher request is received indicating that the voucher was not redeemed or the status
of the voucher is manually reset, additional redemptions MUST NOT be permitted by the host for that
voucher.

Following the generation of a redeemVoucher request, the end-client MUST always generate a commitVoucher
request to report the final results of the voucher redemption request, even if no funds were transferred. If
funds are transferred, the end-client should wait until the transfer is complete and the voucher has been
stacked or returned before generating the commitVoucher request.

Table 4.18 authorizeVoucher Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591424".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

voucherAmt type: t_millicents
use: optional
default: 0

Voucher amount.

Example, "12345000".

creditType type: t_creditTypes
use: optional
default: SSI_cashable

Credit Type.

Example, "SSI_cashable".

voucherSource type: t_voucherSources
use: optional
default: SSI_endClient

Voucher source; set to SSI_endClient.

Example, "SSI_endClient".

largeWin type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client's large win limit.

Example, "false".

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 64 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.6.3 POST redeemVoucherExample — Successful
The following example demonstrates the construction of a successful POST redeemVoucher request
containing a redeemVoucher object and a response containing a authorizeVoucher object. In practice,
additional HTTP headers may be included in the message.

Request:

POST /ssi/1.1/redeemVoucher HTTP/1.1
Content-Length: 381
Content-Type: application/json; charset=utf-8
Accept: application/json
Accept-Charset: utf-8

{
"endClientType": "SSI_kiosk",

shortPay type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the end-client could not fully redeem
another voucher.

Example, "false".

voucherSequence type: numeric
mode: integer
use: optional
default: 0
minimum: 0

The issuing end-client's internal voucher
sequence number; printed on the voucher.

Example, "123".

expireCredits type: boolean
use: optional
default: false

Indicates whether non-cashable credits have an
associated expiration date/time; ignored when
creditType is not set to SSI_nonCashable.

Example, "false".

expireDateTime type: string
use: optional
default: <empty>
format: date-time

Expiration date/time associated with non-
cashable credits; ignored when creditType is
not set to SSI_nonCashable or expireCredits
is set to false.

Example, "2001-01-01T00:00:00-00:00".

hostAction type: t_voucherHostActions
use: optional
default: SSI_endClientAction

Indicates whether the host prefers the voucher
to be stacked, returned, or that the client
determines the appropriate action.

Example, "SSI_endClientAction".

hostException type:
t_voucherHostExceptions
use: optional
default: 0

Host exception code.

Example, "0".

Table 4.18 authorizeVoucher Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 65
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"idReaderType": "SSI_magCard",
"idNumber": "09900101977",
"playerId": "00101977",
"validationId": "012345678901234567",
"employeeAuthArray": [

{
"authCode": "",
"jobCode": "attendant",
"employeeId": "1234"

},
{

"authCode": "SSI_changeAmt",
"jobCode": "manager",
"employeeId": "2345"

}
]

}

Response:

HTTP/1.1 200 OK
Content-Length: 389
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"validationId": "012345678901234567",
"voucherAmt": 12345000,
"creditType": "SSI_cashable",
"voucherSource": "SSI_endClient",
"largeWin": false,
"shortPay": false,
"voucherSequence": 123,
"expireCredits": false,
"expireDateTime": "",
"hostAction": "SSI_endClientAction",
"hostException": 0

}

4.6.4 POST redeemVoucher Example — Not Successful
The following example demonstrates the construction of an unsuccessful POST redeemVoucher request
containing a redeemVoucher object and a response containing a authorizeVoucher object. In practice,
additional HTTP headers may be included in the message.

Request:

POST /ssi/1.1/redeemVoucher HTTP/1.1
Content-Length: 381
Content-Type: application/json; charset=utf-8
Accept: application/json

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 66 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

Accept-Charset: utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"idReaderType": "SSI_magCard",
"idNumber": "09900101977",
"playerId": "00101977",
"validationId": "012345678901234567",
"employeeAuthArray": [

{
"authCode": "",
"jobCode": "attendant",
"employeeId": "1234"

},
{

"authCode": "SSI_changeAmt",
"jobCode": "manager",
"employeeId": "2345"

}
]

}

Response:

HTTP/1.1 200 OK
Content-Length: 164
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"validationId": "012345678901234567",
"hostException": 4

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 67
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.7 POST commitVoucher Resource
This resource is used to report the final disposition of a voucher redemption request to the host. A
commitVoucher request MUST be generated regardless of whether the voucher redemption was successful.

4.7.1 commitVoucher Object
The following table identifies the properties of the commitVoucher Object. Additional properties MAY be
included in the object.

• If unsuccessful and the voucher is not redeemed, the transferAmt property MUST be set to 0 (zero)
and the endClientException property MUST be set to a non-zero value. The host MUST reset the
status of the voucher so that it can be redeemed elsewhere.

• If successful and the voucher is fully redeemed, the transferAmt property MUST be set to the actual
amount transferred and the endClientException property MUST be set to 0 (zero).

• If successful but the voucher is only partially redeemed, the transferAmt property MUST be set to
the actual amount transferred and the endClientException property MUST be set to 90
Disbursement Error – Short Pay.

The end-cleint MUST retry the commitVoucher request at the frequency specified in the timeToLive
configuration property until a valid commitVoucherAck response is received.

The endClientAction property indicates the final disposition of the voucher — that is, whether the voucher
was stacked or returned. If the voucher was stacked by the end-client, the endClientAction property MUST
be set to SSI_redeemed; otherwise, the endClientAction property MUST be set to SSI_returned. The
endClientAction property MUST be set based on the actual action performed by the end-client, not the
action requested by the host in the hostAction property of the authorizeVoucher response.

A commitVoucher request is considered logically equivalent to a previous commitVoucher request if the host
detects that the transactionId associated with the request was reported in a previous commitVoucher request
for the same end-client. In such cases, the host MUST generate a logically equivalent commitVoucherAck
response.

The host MUST make a best effort to acknowledge a commitVoucher request. Failure to acknowledge a
commitVoucher request will cause the end-client to retry the commitVoucher request indefinitely and may lead
to a loss of voucher-related functionality. Host exception 21 Incorrect Voucher Configuration MUST
NOT be reported in response a commitVoucher request. If the request is not successful, the configurationId,

Table 4.19 POST commitVoucher Resource

HTTP Method POST

Pathname /ssi/[ver]/commitVoucher

Request Content-Type application/json; charset=utf-8

Request Content commitVoucher Object

Response Content-Type application/json; charset=utf-8

Response Content commitVoucherAck Object

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 68 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

transactionId, and validationId properties MUST be set to the corresponding values received in the
request.

Table 4.20 commitVoucher Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591424".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

voucherAmt type: t_millicents
use: optional
default: 0

Voucher amount.

Example, "12345000".

creditType type: t_creditTypes
use: optional
default: SSI_cashable

Credit Type.

Example, "SSI_cashable".

voucherSource type: t_voucherSources
use: optional
default: SSI_endClient

Voucher source.

Example, "SSI_endClient".

largeWin type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the amount won exceeded the end-
client's large win limit.

Example, "false".

shortPay type: boolean
use: optional
default: false

Indicates whether the voucher was issued
because the end-client could not fully redeem
another voucher.

Example, "false".

voucherSequence type: numeric
mode: integer
use: optional
default: 0
minimum: 0

The issuing end-client's internal voucher
sequence number; printed on the voucher.

Example, "123".

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 69
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.7.2 commitVoucherAck Object
The following table identifies the properties of the commitVoucherAck Object. Additional properties MAY be
included in the object.

expireCredits type: boolean
use: optional
default: false

Indicates whether non-cashable credits have
an associated expiration date/time; ignored
when creditType is not set to
SSI_nonCashable.

Example, "false".

expireDateTime type: string
use: optional
default: <empty>
format: date-time

Expiration date/time associated with non-
cashable credits; ignored when creditType is
not set to SSI_nonCashable or expireCredits
is set to false.

Example, "2001-01-01T00:00:00-00:00".

transferAmt type: t_millicents
use: optional
default: 0

Actual transfer amount.

Example, "12345000".

transferDateTime type: string
use: optional
default: <empty>
format: date-time

Date/time that the transaction took place.

Example, "2016-03-31T17:11:28-5:00".

endClientAction type: t_voucherClientActions
use: optional
default: SSI_redeemed

Action taken by the end-client; set to
SSI_redeemed or SSI_returned.

Example, "SSI_redeemed".

endClientException type:
t_voucherClientExceptions
use: optional
default: 0

End-client exception code.

Example, "0".

Table 4.21 commitVoucherAck Object Properties

Property Restrictions Description

endClientType type: t_clientTypes
use: required

End-client type.

Example, "SSI_kiosk".

endClientId type: t_clientId
use: required

End-client identifier.

Example, "ABC_123".

configurationId type: t_configurationId
use: required

Configuration identifier.

Example, "1235813".

Table 4.20 commitVoucher Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 70 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

4.7.3 POST commitVoucher Example — Successful
The following example demonstrates the construction of a successful POST commitVoucher request
containing a commitVoucher object and a response containing a commitVoucherAck object. In practice,
additional HTTP headers may be included in the message.

Request:

POST /ssi/1.1/commitVoucher HTTP/1.1
Content-Length: 467
Content-Type: application/json; charset=utf-8
Accept: application/json
Accept-Charset: utf-8

{
"endClientType": "SSI_kiosk",
"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"validationId": "012345678901234567",
"voucherAmt": 12345000,
"creditType": "SSI_cashable",
"voucherSource": "SSI_endClient",
"largeWin": false,
"shortPay": false,
"voucherSequence": 123,
"expireCredits": false,
"expireDateTime": "",
"transferAmt": 12345000,
"transferDateTime": "2016-03-31T17:11:28-05:00",
"endClientAction": "SSI_redeemed",
"endClientException": 0

}

Response:

HTTP/1.1 200 OK
Content-Length: 109
Content-Type: application/json; charset=utf-8

{
"endClientType": "SSI_kiosk",

transactionId type: t_transactionId
use: required

Transaction identifier.

Example, "14591424".

validationId type: t_validationId
use: required

Validation identifier.

Example, "012345678901234567".

hostException type: t_voucherHostExceptions
use: optional
default: 0

Host exception code.

Example, "0".

Table 4.21 commitVoucherAck Object Properties

Property Restrictions Description

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Released: 2019/07/11 Page 71
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

"endClientId": "ABC_123",
"configurationId": 1235813,
"transactionId": 14591424,
"validationId": "012345678901234567"

}

 Look Inside Chapter 4
 Simple System Interface v1.1 Voucher Resources

Page 72 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NEW CHAPTER

	Chapter 1 Look Inside Introduction
	1.1 Overview

	Chapter 4 Look Inside Voucher Resources
	4.1 Introduction
	4.1.1 Sequence Diagrams
	4.1.2 Voucher States
	4.1.3 Validation Identifiers
	4.1.4 Manual Authentication Identifiers
	4.1.5 End-Client Identifier
	4.1.6 Player Identifier
	4.1.7 Configuration Identifier
	4.1.8 Transaction Identifier
	4.1.9 Host Exception Code
	4.1.10 End-Client Exception Code
	4.1.11 Employee Authorizations
	4.1.12 Optional Properties

	4.2 GET voucherConfiguration Resource
	4.2.1 GET voucherConfiguration Properties
	4.2.2 voucherConfiguration Object
	4.2.3 GET voucherConfiguration Example — Successful
	4.2.4 Get voucherConfiguration Example — Not Successful

	4.3 GET validationResource
	4.3.1 Get validationIdList Properties
	4.3.2 validationIdList Object
	4.3.3 GET validationIdList Example — Successful
	4.3.4 GET validationIdList Example — Not Successful

	4.4 POST issueVoucher Resource
	4.4.1 issueVoucher Object
	4.4.2 issueVoucherAck Object
	4.4.3 POST issueVoucher Example — Successful

	4.5 GET voucherStatus Resource
	4.5.1 GET voucherStatus Properties
	4.5.2 voucherStatus Object
	4.5.3 GET voucherStatus Example — Successful
	4.5.4 GET voucherStatus Example — Not Successful

	4.6 POST redeemVoucher Resource
	4.6.1 redeemVoucher Object
	4.6.2 authorizeVoucher Object
	4.6.3 POST redeemVoucherExample — Successful
	4.6.4 POST redeemVoucher Example — Not Successful

	4.7 POST commitVoucher Resource
	4.7.1 commitVoucher Object
	4.7.2 commitVoucherAck Object
	4.7.3 POST commitVoucher Example — Successful

