
GDS® Note Acceptor: Communication Protocol v1.4 Chapter 1
Look Inside Introduction

Released: 2019/07/11 Page 1
© 2019 Gaming Standards Association (GSA)

Chapter 1

Look Inside

Introduction

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 1
Look Inside Introduction

Page 2 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

1.1 Introduction
This is the specification for a USB note acceptor as defined by the GDS within the GSA. For the purposes of
this document the terms “USB note acceptor”, “note acceptor”, “GDS device” and “device” may be used
interchangeably. The aim of the GDS is to develop true plug ‘n’ play peripherals for the gaming environment
which are already common place in the computer industry. Rather than use a derivative of RS232 it was
decided to move the technology forward and adopt the USB standard.

This document specifies the complete set of functionality for the GDS Note Acceptor.

1.2 Note Acceptor Function Overview
Commands supported by the note acceptor are defined in Chapter 3. Supported events are defined in Chapter
4. Common commands and events are identified in Chapter 2.

The note acceptor on power-up must default to escrow mode, be disabled, run a diagnostic test, and report
events as necessary.

The note acceptor stores accepted note data, even over power failure intervals, until the acknowledgment of
the note data transaction is received from the host.

The interrupt service period, bInterval, is 100ms.

1.3 USB Compliance and Benefits
USB is currently available in three speeds:

• low speed: 1.5 Mbits/sec.

• full speed: 12Mbits/sec.

• high speed: 480Mbits/sec.

GDS peripherals MUST, at a minimum, support full speed and MUST comply with all published USB
requirements.

Only one master exists on the USB bus and that is the host machine. All peripherals MUST be connected
through hubs (up to 127 allowed but this is likely to be less than 10). For security reasons, it is undesirable to
have a direct peripheral-to-peripheral communication path. Therefore, OTG (On- The-Go) extensions that
allow peripherals to talk directly to one another MUST NOT be used; all communication MUST be via the
host.

1.4 Note Acceptors as HID Class Devices
To remove the need for special manufacturer-specific device drivers, the note acceptor MUST be implemented
as an HID—Human Interface Device—class device (see document reference DCDHID). This is the same
class as mice, keyboards and joysticks but is a flexible enough to be used for general input/output data packets

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 1
Look Inside Introduction

Released: 2019/07/11 Page 3
© 2019 Gaming Standards Association (GSA)

where the data sizes are relatively small and the transfer rates low. HID implements usage pages and usage
numbers to allow access to data in an abstracted fashion, regardless of the manufacturer or even the exact
location within a report of where the data can be found.

This document assumes hardware and firmware are in place to support a HID class device within USB and so
need only concern itself with HID commands and data formats for gaming. Product identification is also
discussed.

1.5 Device Firmware Upgrade (DFU)
GDS devices MUST use the Device Firmware Upgrade (DFU) standard, version 1.1, as defined by USB-IF,
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf as the method of upgrading device
firmware.

The use of the DFU class MUST NOT affect the behavior of the HID class.

Upon firmware upgrade the device MUST clear its internal memory including memory involving Transaction
IDs.

The serial number exposed through the device descriptor in DFU and GDS modes MUST be identical.

Support for firmware download is REQUIRED; support for firmware upload is OPTIONAL.

http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 1
Look Inside Introduction

Page 4 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Released: 2019/07/11 Page 5
© 2019 Gaming Standards Association (GSA)

Chapter 2

Look Inside

Command Support

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Page 6 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

2.1 Command Support
The following note acceptor commands MUST be supported and implemented as HID Feature reports.

NOTE:
The following reports are diagnostic commands: Report 0x04 Self Test, Report 0x05 Request GAT Report, Report
0x08 Calculate CRC, Report 0x80 Number of Note Data Entries, and Report 0x81 Read Note Table.

Table 2.1 Supported Note Acceptor Commands

Report ID Usage ID Name Data

0x01 0x40 ACK No Page 7

0x02 0x41 Enable No Page 9

0x03 0x42 Disable No Page 9

0x04 0x43 Self Test No Page 9

0x05 0x44 Request GAT Report No Page 10

0x08 0x47 Calculate CRC Yes Page 10

0x80 0x0210 Number of Note Data
Entries

No Page 11

0x81 0x0211 Read Note Table No Page 11

0x82 0x0212 Extend Timeout No Page 12

0x83 0x0213 Accept Note/Ticket No Page 12

0x84 0x0214 Return Note/Ticket No Page 12

Extension in v1.2

0x8A 0x021A Read Note Acceptor
Metrics

No Page 13

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Released: 2019/07/11 Page 7
© 2019 Gaming Standards Association (GSA)

2.2 Command Execution When Enabled/Disabled
The following table shows the device state a given command can be performed under. Any command sent to
the note acceptor while it is in the wrong state MUST be ignored. Unless specified differently elsewhere, any
command sent to the note acceptor while it is in the correct state MUST NOT be ignored.

2.3 Report 0x01 ACK
This is a pseudo-command as it is sent in response to a Transaction ID event from the note acceptor as part of
the handshake sequence. This command is used to confirm critical events such as Note Validated, Ticket
Validated, Note/Ticket Status and Stacker Status events.

The Note Validated event, Ticket Validated event, Note/Ticket Status event and Stacker Status event share the
same Transaction ID sequence, and are referred to as note acceptor Transaction ID, or TID, events.

A Transaction ID stamp is used to ensure that every note acceptor TID event is properly handled by the host
and only acknowledged events are removed from the note acceptor queue. If the device does not receive an
ACK from the host within one (1) second then the event MUST be resent to the host.

The Transaction ID protocols are only used with TIDs. If power is removed before all of the note acceptor
TID events have been completely communicated with the host, they MUST be re-issued by the acceptor when
power is restored and enabled. Therefore, any un-sent or pending note acceptor TIDs MUST be buffered in
NVM.

Table 2.2 Command Execution When Enabled/Disabled

Command Operation When
Device Enabled

Operation When
Device Disabled

0x02 Enable Yes Yes

0x03 Disable Yes Yes

0x04 Self Test No Yes

0x05 Request GAT Report No Yes

0x08 Calculate CRC No Yes

0x80 Number of Note Data Entries No Yes

0x81 Read Note Table No Yes

0x82 Extend Timeout Yes No

0x83 Accept Note/Ticket Yes No

0x84 Return Note/Ticket Yes No

Extension in v1.2

0x8A Read Note Acceptor Metrics No Yes

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Page 8 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

2.3.1 Transaction ID Rules
1. The Transaction ID sequence is common to events that contain a Transaction ID. The Transaction ID

MUST be incremented sequentially each time one of these events occurs and is acknowledged. For
example, a 0x86 Note Validated event (see Page 30) with a Transaction ID of 100 would be followed
by a 0x88 Note/Ticket Status event (see Page 32) with a Transaction ID of 101.

2. Transaction IDs MUST increment through the range 0 to 255.

3. Transaction IDs MUST NOT be cleared from the note acceptor stack except:

a. After the host has acknowledged the event and the Transaction ID rules have been met
whereby both the host and device Transaction IDs are in sync.

b. Upon a firmware upgrade of the device (DFU). In this case all Transaction IDs MUST be
cleared.

4. The current Transaction ID MUST be stored in the device's NVM so as to provide a reference
number in the event of a power interruption.

5. If the device does not receive an acknowledge from the host within one (1) second after sending a
critical event, the device MUST retry sending the event every one (1) second until the host properly
acknowledges the event and the Transaction IDs are in sync.

6. While waiting for an ACK, a device MUST NOT NAK, at the USB level, a command from the host.

7. When the Resync bit is set in an ACK command, the device MUST reset the current Transaction ID
to the value specified by the host in the ACK command. The pending event MUST then be retried
using the new the Transaction ID. The Transaction ID MUST be incremented sequentially from that
new Transaction ID. For example, if an event is sent with Transaction ID 10 and the host resyncs the
Transaction ID to 20, the event will be retried with Transaction ID 20 and the next event will be sent
with Transaction ID 21.

Table 2.3 0x01 ACK Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x01

Byte 1 - - - - - - - Resync

Byte 2 Transaction ID

Table 2.4 0x01 Field Descriptions

Name Value Description

Resync 0 The device MUST NOT re-sync its Transaction ID.
This is an acknowledgement.

1 The device MUST re-sync its Transaction ID and
resend the pending report.

Transaction ID 0 to 0xFF The confirmed or new Transaction ID. See Section
2.3.1.

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Released: 2019/07/11 Page 9
© 2019 Gaming Standards Association (GSA)

2.4 Report 0x02 Enable
The device MUST activate any inputs and/or enable any outputs. If the device has a fault then it MUST stay
disabled and report the fault to the host.

The host issues this command to allow notes to be drawn into the note acceptor for the purposes of validation.

Animation lamps are enabled.

If the device has no faults, after enabling itself, the device MUST send the 0x0A Device State event with the
Enable bit set (see Page 26).

2.5 Report 0x03 Disable
The device MUST deactivate any inputs and/or disable any outputs. The host issues this command when it
does not want to allow notes/tickets to be drawn into the note acceptor. If a note/ticket is in escrow when this
command is received, the device MUST return the note/ticket immediately after disabling itself; the device
MUST NOT wait for the timeout period for the note/ticket to expire before returning the note/ticket.

The host MUST send a Disable command before issuing any diagnostic commands (defined on Page 61).

Animation lamps are disabled; however, any lamps that indicate that the device is out of service are not
affected.

When the device is in the enabled state and receives a Disable command, the device MUST immediately
disable itself and respond with the 0x0A Device State event (see Page 26).

2.6 Report 0x04 Self Test
The device MUST initiate a self-test sequence when instructed by the host. When the host requests a self-test,
the device MUST respond with a 0x85 Failure Status event (see Page 29). The device MUST complete all tests
before sending the Failure Status event to the host. Multiple failures MUST be presented in the final single

Table 2.5 0x02 Enable Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x02

Table 2.6 0x03 Disable Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x03

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Page 10 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

Failure Status event, with the exception of multiple 'Other' failures, which MUST be reported in separate
Failure Status events.

2.7 Report 0x05 Request GAT Report
The host sends this command to request information from the note acceptor via a 0x07 GAT Data event (see
Page 24). The device is not required to monitor itself for fault conditions during the performance of this
command. The 0x07 GAT Data response MUST be in ASCII format. The following characters MUST NOT
be used in the response data: '<' or '/>'. The note acceptor does not output in XML.

At this time, the serial and network-based GAT protocols, such as GAT v3.50, G2S v1.1, and S2S 1.5, do not
require the use of this command. Authentication of peripheral devices is performed using the 32-bit CRC
algorithm. This command is simply a placeholder. The GAT data in the response is manufacturer-specific in
terms of length and content. The response MAY include no data bytes.

2.8 Report 0x08 Calculate CRC
The host can request a 32-bit checksum from the code space within the note acceptor’s ROM memory,
excluding the USB Identification Strings (see Page 50). For additional accuracy and security, a 32 bit seed is
sent to the device as a parameter of this command. The host may choose any seed value and compare the
result with a look-up table or a similar calculation based on an exact reference copy of the code to be verified.

A checksum report is returned in the 0x09 CRC Data event (see Page 26) with the result.

Table 2.7 0x04 Self Test Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x04

Byte 1 - - - - - - - NVM

Table 2.8 0x04 Field Descriptions

Name Value Description

NVM 0 Perform self-test.

1 Non-volatile Memory (NVM), previously queued
Transaction ID events and Transaction ID sequence
number, MUST be cleared before the self-test is
performed.

Table 2.9 0x05 Request GAT Report Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x05

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Released: 2019/07/11 Page 11
© 2019 Gaming Standards Association (GSA)

While calculating the CRC the device is not required to receive any additional commands. The device is
permitted to NAK_OUT all requests from the host while performing the CRC calculation. The device is also
not required to monitor itself for fault conditions during the performance of this command.

See Page 63 for the algorithm used.

2.9 Report 0x80 Number of Note Data Entries
The host issues this command to first determine how many note data entries are expected to be read or written
when an upgrade or 0x81 Read Note Table command (see Page 11) is executed.

2.10 Report 0x81 Read Note Table
The host issues this command to get the list of notes supported by the note acceptor. If note data is upgraded,
the host must re-issue this command as the number of entries and/or value associated with a given Note ID
(see Page 28) may have changed.

Table 2.10 0x08 Calculate CRC Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x08

Byte 1 Seed 0

Byte 2 Seed 1

Byte 3 Seed 2

Byte 4 Seed 3

Table 2.11 0x08 Field Descriptions

Name Value Description

Seed 0 to 255 The starting seed for the CRC-32 calculation. Seed 0 is
the LSB.

Table 2.12 0x80 Number of Note Data Entries Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x80

Table 2.13 0x81 Read Note Table Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x81

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Page 12 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

2.11 Report 0x82 Extend Timeout
The host issues this command in response to either 0x86 Note Validated event (see Page 30) or 0x87 Ticket
Validated event (see Page 31) when it needs to retain a note/ticket in escrow for a longer period. The Extend
Timeout command resets the timeout period to five (5) seconds.

2.12 Report 0x83 Accept Note/Ticket
The host issues this command in response to either 0x86 Note Validated event (see Page 30) or 0x87 Ticket
Validated event (see Page 31) when it wants to accept and stack a note/ticket. The host must not credit the
note/ticket value until a 0x88 Note/Ticket Status event (see Page 32) is received from the device with the
Accepted bit set.

The device MUST automatically return the note/ticket if it does not receive a command to accept or return the
note/ticket from the host within five (5) seconds from sending the 0x86 Note Validated or 0x87 Ticket
Validated event and the timeout has not been extended. A 0x88 Note/Ticket Status event, (see Page 32) MUST
be issued by the device if a note/ticket is returned due to lack of host response.

The host MAY extend the timeout period by issuing 0x82 Extend Timeout command (see Page 12) before the
device's timeout period expires. The host MAY continue to extend the device's timeout period indefinitely.

2.13 Report 0x84 Return Note/Ticket
The host issues this command in response to either 0x86 Note Validated event (see Page 30) or 0x87 Ticket
Validated event (see Page 31) when it wants to return the note/ticket. The device MUST automatically return
the note/ticket if it does not receive a command to accept or return the note/ticket from the host within five
(5) seconds from sending the 0x86 Note Validated or 0x87 Ticket Validated event and the timeout has not
been extended. After returning the note/ticket, the device MUST generate the 0x88 Note/Ticket Status event
(see Page 32) with the Returned bit set for confirmation. See Section 4.17.2.1, Note Acceptor Automatic
Reject, for special requirements that apply if the host instructed the note acceptor to reject the note/ticket but
the note/ticket was not returned before a power cycle or system reset occurred.

Table 2.14 0x82 Extend Timeout Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x82

Table 2.15 0x83 Accept Note/Ticket Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x83

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Released: 2019/07/11 Page 13
© 2019 Gaming Standards Association (GSA)

The host MAY extend the timeout period by issuing 0x82 Extend Timeout command (see Page 12) before the
device's timeout period expires. The host MAY continue to extend the device's timeout period indefinitely.

The host issues this command to request the note acceptor’s capability metrics, such as types of barcodes
supported and UTF-16 support. The note acceptor sends the 0x8A Read Note Acceptor Metrics event (Page
35) in response.

Table 2.16 0x84 Return Note/Ticket Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x84

2.14 Report 0x8A Read Note Acceptor Metrics
Extension in v1.2

Table 2.17 0x8A Read Note Acceptor Metrics Structure

Bit 7 6 5 4 3 2 1 0

Byte 0 0x8A

GDS® Note Acceptor: Communication Protocol v1.4 Chapter 2
Look Inside Command Support

Page 14 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

	Chapter 1 Look Inside Introduction
	1.1 Introduction
	1.2 Note Acceptor Function Overview
	1.3 USB Compliance and Benefits
	1.4 Note Acceptors as HID Class Devices
	1.5 Device Firmware Upgrade (DFU)

	Chapter 2 Look Inside Command Support
	2.1 Command Support
	2.2 Command Execution When Enabled/Disabled
	2.3 Report 0x01 ACK
	2.3.1 Transaction ID Rules

	2.4 Report 0x02 Enable
	2.5 Report 0x03 Disable
	2.6 Report 0x04 Self Test
	2.7 Report 0x05 Request GAT Report
	2.8 Report 0x08 Calculate CRC
	2.9 Report 0x80 Number of Note Data Entries
	2.10 Report 0x81 Read Note Table
	2.11 Report 0x82 Extend Timeout
	2.12 Report 0x83 Accept Note/Ticket
	2.13 Report 0x84 Return Note/Ticket
	2.14 Report 0x8A Read Note Acceptor Metrics

