
G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 1
© 2019 Gaming Standards Association (GSA)

Chapter 21

Look Inside

voucher Class

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 2 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.1 Introduction
The voucher class is used to manage the process of issuing and redeeming payment vouchers (sometimes
referred to as tickets or coupons) at an EGM. Vouchers can be cashable, promotional, or nonCashable. The
voucher class includes commands and events to issue and redeem vouchers, and to set validation identifiers.
The class also includes commands to retrieve the voucher history log maintained by the EGM.

When a player cashes out at an EGM and the EGM is configured for printing payment vouchers, the EGM
may issue vouchers in lieu of coin or other payment. A voucher may only contain one type of credit. Thus, if
multiple types of credits (cashable, promotional, nonCashable) are on the EGM when the player cashes out,
the EGM may have to produce multiple vouchers. Vouchers issued by one EGM may be redeemed at another
EGM. If the credits are cashable or promotional, vouchers can be redeemed at a cashier’s station or at a self-
service kiosk.

The voucher class is a single-device class. The EGM MUST only expose one active voucher device. Class-level
meters and logs MUST include activity related to both active and inactive devices. Inactive devices may be
exposed through the commConfig class. Transaction logs associated with the voucher class MUST be
maintained at the class level.

The voucher class supports both issuing and redeeming vouchers. The allowVoucherIssue profile attribute
controls functionality related to validation data for a voucher device; it does not (directly) control voucher
issuance. However, without validation data, a voucher device will be unable to issue cash-out vouchers and
other types of generic vouchers.If allowVoucherIssue is set to false for a device:

• The EGM MUST NOT place any getValidationData commands for the voucher device in the
outbound queue.

• The EGM MUST NOT generate the G2S_VCE101 Validation ID Data Expired event for the
voucher device.

• The EGM MUST NOT disable the voucher device due to not having validation ID data.

The allowVoucherRedeem profile attribute controls whether a voucher device MAY be used for voucher
redemption. If allowVoucherRedeem is set to false, the EGM MUST NOT generate the redeemVoucher
command for the voucher device.

21.1.1 Device Class Information: Single-Device
Extension in v3.0: g2s3

21.1.2 allowVoucherIssue and allowVoucherRedeem Attributes
Extension in v2.0.0: g2s1

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 3
© 2019 Gaming Standards Association (GSA)

21.2 Transaction Identifiers
Within the G2S protocol, voucher redemption is a four-step process:

1. Request: The EGM requests permission from the host to redeem a voucher.

2. Authorize: The host authorizes the EGM to redeem a voucher.

3. Commit: The EGM notifies the host that it has committed a voucher value to the credit meter or
rejected the voucher.

4. Acknowledge: The host acknowledges that it received a commitment command.

The commands used to redeem vouchers include a transactionId attribute. The transactionId attribute is
used to link all four parts together. When an EGM initiates a voucher redemption, the EGM includes the
transactionId in the initial command sent to the host. Both the host and the EGM include the
transactionId in all subsequent commands related to the redemption process. For consistency, the
transactionId is also included in the commands used to issue vouchers.

The EGM MUST generate transaction identifiers as a sequence that strictly increases by 1 (one). The EGM
MUST maintain the counters used to generate transaction identifiers in persistent storage. A single counter
MUST be used for all protocol-related transactions within the EGM. See Chapter 1 for more details on
transaction identifiers.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 4 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.3 Seeds and Validation IDs
Within the G2S protocol, the voucher class has been designed to support a wide range of operating
requirements. Many of these requirements relate to the ability of an EGM to produce vouchers after it has lost
communications with the validation system — that is, when the validation system is offline (see Section 21.3.2,
Validation System Offline, for more details). Within the G2S protocol, configuration parameters support many
different scenarios for offline behavior. The scenarios revolve around three key concepts:

• The number of vouchers an EGM may produce without host interaction,

• The amount of time an EGM can produce vouchers without host interaction, and

• Whether vouchers can be produced at all while offline.

To support issuing vouchers, the EGM is provided a set of validation identifiers and a seed value for each
identifier. The seed values are comprised of from 0 (zero) to 20, UTF-8 encoded characters in the range of
U+0020 to U+007E (ASCII printable characters). Seed values outside this range will cause validation errors.
Validation seeds are used only for manual authentication (see Section 21.4). Validation identifiers are 18-digit
numbers printed on the voucher in both human-readable and bar-coded form. This information MUST be
stored in persistent memory.

NOTE:
While validation identifiers are required to be 18-digit numbers when printed on vouchers, in some
elements, the validation identifiers MUST be masked for security reasons. In such cases, the leftmost
14 (fourteen) digits MUST be masked and replaced with non-numeric values. For example, in the
voucherLog element, the validation identifier “123456789012345678” MUST be masked and a value
such as “xxxxxxxxxxxxxx5678” MUST be reported.

The EGM can only produce vouchers so long as it has unused validation identifiers available. To prevent an
EGM from running out of validation identifiers, the host may specify a threshold at which the EGM MUST
request additional validation identifiers. The validation identifiers should not be a continuous sequence. The
programmers of host systems are free to use their ingenuity to reduce the predictability of the validation
identifiers and, thus, enhance security.

It is anticipated that the validationId list will be managed in a manner which will not waste identifiers, and
which will not inadvertently place the EGM in a state where it does not have any identifiers available. To
facilitate this, the normal process is for the host to add to the validation identifiers currently remaining on the
EGM. In this way the EGM will always have the data necessary to print a cash-out voucher.

If an EGM is permitted to print offline vouchers, it may do so until either it has used up the available
validation identifiers or the valIdListLife timer expires. Note that, even if an EGM is not permitted to print
offline vouchers, it is always possible that an EGM will print a voucher and then be unable to report that
voucher because the host just went offline. To enable the EGM to make full use of all available validation
identifiers, the host should ensure the maximum number of log entries is greater than the maximum number of
validation identifiers given to the EGM. A large number of validation identifiers will enable the EGM to print
vouchers offline for an extended period of time. However, if the seeds and voucher identifiers on an EGM are
ever compromised, offline vouchers will no longer be secure. The valIdListRefresh attribute can be used to
limit this exposure. The host may then decide whether to allow the EGM to keep the existing validation data or
replace it with new data.

The host should carefully select the values for the valIdListLife and valIdListRefresh attributes. Values
that are too small may cause frequent and unnecessary requests for new validation identifiers. This may make
the issuance of vouchers at the EGM difficult and may cause excessive traffic at the host. As noted above,
values that are too large may compromise the security of the validation identifiers.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 5
© 2019 Gaming Standards Association (GSA)

Even in normal online scenarios, an EGM that is not getting much play may have the same set of validation
identifiers and seeds for an extended period of time. To improve the security of the validation seeds, the host
may want to periodically change the validation identifiers and seeds. The host may use the deleteCurrent
attribute to send the EGM a completely new set of validation identifiers and seeds. To prevent the possibility
of a validationId being used twice, the new list should never include any validation identifiers that are
potentially currently on the EGM.

With the deleteCurrent attribute set to true, the EGM will delete its current list and replace it with the new
list in a single operation. In this way, the EGM will never be in a position where it will not have validation
identifiers available for a requested cash-out. The EGM MUST NOT issue event G2S_VCE102 Validation ID
Data Updated, until all outstanding issueVoucher commands have been acknowledged. It is recommended
that a host not arbitrarily "burn" validation identifiers. After the host has received the G2S_VCE102 Validation
ID Data Updated event and verified which of the previous validation identifiers were actually used, the host
may return the unused identifiers to its pool of available identifiers.

In regards to vouchers, the proper start up sequence for the EGM is:

1. Retry unacknowledged voucher transactions.

2. Generate a getValidationData request to inform the host of the current status of the validation
identifier list.

Under no circumstances should an EGM request validation identifiers from the host unless the host has
acknowledged all issueVoucher commands. This can be determined from the EGM’s voucher transaction log.

When the allowVoucherIssue profile attribute is set to false for a voucher device:

• The EGM MUST NOT place any getValidationData commands for the voucher device in the
outbound queue.

• The EGM MUST NOT generate the G2S_VCE101 Validation ID Data Expired event for the
voucher device.

• The EGM MUST NOT disable the voucher device due to not having validation ID data.

In the G2S protocol, host offline is typically indicated by the transportState attribute of the commsStatus
command being set to something other than G2S_transportUp for the host’s communications device. This
may occur when the no-response timer expires or due to an issue with the underlying transport. See Section
2.4.8, Transport-Related Events, for more details.

However, the validation database, which contains issued vouchers, may be on a different physical server from
the server acting as the voucher host. Regulatory requirements dealing with offline voucher operation are not
concerned with whether the EGM is communicating with the voucher host; they are concerned with whether
the EGM is communicating with the validation system — that is, whether data for a voucher issued by the
EGM can be stored in the validation database in a timely manner.

Clearly, if the EGM has lost communications with the voucher host, it has also lost communications with the
validation system, whether that is the same server or a different server. However, if the validation database is
on a separate server, it is possible for the validation system to be down even though the voucher host is still
communicating with the EGM.

21.3.1 allowVoucherIssue Attribute
Extension in v2.0.0: g2s1

21.3.2 Validation System Offline
Extension in v3.0: g2sVSO

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 6 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

To support EGM compliance with regulations that prohibit the EGM from printing more than one voucher
when the validation system is down, it is essential that the voucher host not generate an issueVoucherAck
command until the validation data from the issueVoucher command is stored in the validation database.

With this extension, when the EGM issues a voucher, the EGM starts a timer using the value from the
noAckTimer attribute of the voucherProfile command. If the timer expires before the EGM receives the
issueVoucherAck command for the voucher or the transportState attribute of the voucher host’s
communication device is set to anything other than G2S_transportUp, the EGM sets the systemOnLine
attribute of the voucherStatus command to false and generates event G2S_VCE112 Validation System
Offline. Once the transportState attribute is set to G2S_transportUp and all issued vouchers have been
acknowledged, the systemOnLine attribute is set to true and the event G2S_VCE113 Validation System Not
Offline. See Section 21.11.1.1, systemOnLine Attribute, for more details.

The printOffLine, maxOffLinePayOut, and printNonCashOffLine attributes of the voucherProfile
command require specific behavior when the validation system is offline. While the systemOnLine attribute is
set to false, the EGM MUST consider the validation system offline and comply with the behavior specified
for those attributes.

NOTE:
Even if an EGM does not support this extension, it SHOULD still assume that a delay in receiving the
issueVoucherAck command (15 seconds recommended) means the validation system is offline. Otherwise, the
EGM may not be compliant with regulations that prohibit offline vouchers.

G2S supports a secure offline voucher process, which allows vouchers to be printed and delivered directly to
the player even when the validation system is offline. However, not all jurisdictions allow an EGM to print a
voucher in direct response to a player cashout request when the validation system is offline. This extension is
specifically for use in jurisdictions that only allow an EGM to print an offline voucher after the EGM has
locked up in a handpay request and an attendant has turned the reset key. Offline vouchers generated in this
way are referred to as Offline Handpay Vouchers.

To satisfy these requirements, if the enableHandpayVoucher attribute of the voucherProfile command is set
to true and the validation system is offline (that is, the systemOnLine attribute of the voucherStatus
command is false) and there is no other cashout method available, the EGM MUST lock up and generate a
cancel credit handpay request (G2S_cancelCredit) in response to a player-initiated cashout request.

In such cases, if the printOffLine attribute of the voucherProfile command is set to true, the EGM MAY
print an Offline Handpay Voucher when the attendant keys off the handpay request. If the attendant keys off
the handpay request to an Offline Handpay Voucher, the EGM MUST generate one or more Offline Handpay
Vouchers, as necessary, to satisfy the cashout request and remove the credits from the EGM.

Offline Handpay Vouchers contain the same validation information as standard vouchers. However, the
barcode MUST be offset on Offline Handpay Vouchers to prevent the Offline Handpay Vouchers from being
redeemed at an EGM. In addition, the EGM MUST use the title specified in the titleHandpayVoucher
attribute of the voucherProfile command rather than the title that would be printed on a standard offline
voucher in normal circumstances. The validation system does not need to treat the Offline Handpay Vouchers
differently than standard vouchers.

When configured to generate Offline Handpay Vouchers, the EGM MUST ignore the valIdListLife timer
regardless of whether the validation system is online or offline. Even if the valIdListLife timer has expired
for the current set of validation IDs, the EGM MUST still use the validation IDs to generate Offline Handpay

21.3.2.1 Offline Handpay Vouchers

Extension in v3.0: g2sVSO1

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 7
© 2019 Gaming Standards Association (GSA)

Vouchers. In such cases, event G2S_VCE101 Validation ID Data Expired MUST NOT be generated.
Requirements related to the maxOffLinePayOut and printNonCashOffLine attributes of the voucherProfile
command MUST still be enforced.

In addition, to assure that there are always validation IDs available for generating Offline Handpay Vouchers,
when the enableHandpayVoucher attribute of the voucherProfile command is set to true, the EGM MUST
disable the voucher device (that is, set the egmEnabled attribute of the voucher device to false) if the number
of available validation IDs is less than two. If the voucher device is required for play, this action will cause the
EGM to be disabled.

Subsequently, after the EGM has disabled the voucher device, if additional credits are on the EGM, the EGM
MUST ignore the egmEnabled attribute and continue to use the available validation IDs to produce Offline
Handpay Vouchers for player-initiated cashouts until the supply of validation IDs is completely depleted. The
egmEnabled attribute is set to false simply as a means of triggering the required-for-play behavior and disabling
the EGM.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 8 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.4 Manual Authentication
A key feature of the G2S protocol is the ability to manually authenticate offline vouchers produced by EGMs.
This procedure is used in cases where an EGM produced a voucher but did not communicate the voucher
information to the host; and thus, the host does not have a record of the voucher.

A 32-character manual authentication identifier MUST, if possible, be printed on every voucher for cashable
and promotional credits produced by the EGM. The authentication identifier is derived from a 128-bit MD5
hash of the EGM identifier, validation identifier, voucher amount, and seed value. If an EGM cannot print a
manual authentication identifier on vouchers, it MUST NOT print offline vouchers. Operational
circumstances MAY prevent the EGM from printing manual authentication codes. For example, the operator
might choose to use a printer that does not have voucher templates that support manual authentication codes,
or the operator might configure the EGM to not print manual authentication codes. If an EGM is not
configured to print manual authentication codes on vouchers, it MUST NOT allow the printOffLine
attribute of the voucherProfile to be set to true.

Each validation identifier that the host system sends to an EGM also includes an associated seed value. At the
time of issuance, the authentication identifier and the voucher amount are printed on the voucher. To
authenticate a voucher, the validation identifier and amount are entered into the host system. Because the host
system knows the EGM identifier and seed, it can create its own authentication identifier. The authentication
identifier recreated by the host can be compared to the authentication identifier printed on the voucher. If they
match, the voucher can be presumed valid for the amount entered with an extremely high probability.

The following procedure is used to produce the authentication identifier:

1. Produce a string composed of, left to right, the

• EGM identifier, 32 8 bit printable ASCII characters (U+0020 to U+007E), ASCII "0"
(U+0030) padded right

• validation identifier, 18 Numeric ("0" through "9") ASCII characters (U+0030 to U+0039)

• seed value, 20, UTF-8 encoded characters in the range of U+0020 to U+007E, ASCII "0"
(U+0030) padded left

• the numerical value of the voucher amount as printed on the voucher, in cents, with no
punctuation or currency sign, 20 characters ASCII "0" (U+0030) padded left. For example, a
voucher with a printed value of $107.35 would result in a string of: 00000000000000010735

2. Convert all lower case characters a-z in the composed string to upper case ASCII characters.

3. Produce a 128-bit hash value with the MD5 algorithm using the 90-character string as input.

4. Produce the authentication identifier by casting the resulting hash value into a 32-character hex
representation. Convert all alpha characters to their upper case form.

A 32-character manual authentication identifier is printed on every voucher for cashable and promotional
credits produced by an EGM. If the printNonCashOffLine attribute is set to true in the voucherProfile, an
authentication identifier is also printed on all vouchers for non-cashable credits.

21.4.1 printNonCashOffLine Attribute
Extension in v2.0.0: g2s1

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 9
© 2019 Gaming Standards Association (GSA)

21.4.2 Test Cases for Voucher Authentication Algorithm
The following tables list the test cases for the G2SVoucher Authentication ID algorithm. Note that the
specification does not include the dashes (-) in the Authentication ID. They have been added to improve
readability.

Table 21.1 Test Case 1 for Voucher Authentication Algorithm

Value String Component

EGM ID EGM-1111 EGM-1111000000000000000000000000

Validation ID 800000000000000151 800000000000000151

Seed 13857577 00000000000013857577

Amount 5000 00000000000000005000

Authentication ID F723-13F5-2751-E731-5B56-49B7-0895-7CCD

Table 21.2 Test Case 2 for Voucher Authentication Algorithm

Value String Component

EGM ID EGM-1111 EGM-1111000000000000000000000000

Validation ID 800000000000000248 800000000000000248

Seed 13857577 00000000000013857577

Amount 5000 00000000000000005000

Authentication ID 2E04-3435-E6B3-E319-FDB3-EEED-CF5D-6192

Table 21.3 Test Case 3 for Voucher Authentication Algorithm

Value String Component

EGM ID EGM-1234 EGM-1234000000000000000000000000

Validation ID 899999999999999906 899999999999999906

Seed 98765432ABC 00000000098765432ABC

Amount 100000 00000000000000100000

Authentication ID 74BD-304C-D77B-37EE-ECBC-4CA6-F994-C027

Table 21.4 Test Case 4 for Voucher Authentication Algorithm (Sheet 1 of 2)

Value String Component

EGM ID EGM-8989 EGM-8989000000000000000000000000

Validation ID 875693785693753584 875693785693753584

Seed X93859785 00000000000X93859785

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 10 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

Amount 255555 00000000000000255555

Authentication ID 6DE2-D548-C077-F77A-8A60-EC43-6743-3CFA

Table 21.5 Test Case 5 for Voucher Authentication Algorithm

Value String Component

EGM ID EGM-ID-9483285935 EGM-ID-9483285935000000000000000

Validation ID 800008583986534043 800008583986534043

Seed 3466wst533 00000000003466WST533

Amount 99999999 00000000000099999999

Authentication ID D41C-5D1A-583F-FA40-BC40-EAF6-A763-9B52

Table 21.6 Test Case 6 for Voucher Authentication Algorithm

Value String Component

EGM ID EGM-ID-8953435654 EGM-ID-8953435654000000000000000

Validation ID 811111111111111141 811111111111111141

Seed 346653374 00000000000346653374

Amount 87654321 00000000000087654321

Authentication ID CEAF-3411-7CFC-1CBD-84E9-EFE8-EC71-2DC7

Table 21.4 Test Case 4 for Voucher Authentication Algorithm (Sheet 2 of 2)

Value String Component

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 11
© 2019 Gaming Standards Association (GSA)

21.5 Transaction Logs
The G2S protocol requires that an EGM maintain logs of critical transactions in persistent storage. In case of
power or communications outages, these logs are used to preserve and recover critical transactions. When an
EGM is recovering from a power outage, communications outage, or other event that may have caused
commands to be lost, the EGM MUST scan the logs of critical transactions and retry any transactions for
which the EGM has not received and processed a response command from the host. Transaction logs are
maintained on a class-by-class basis; all of the transactions related to a particular class are contained within
class-level logs. The number of critical transactions that MUST be maintained in persistent storage by the
EGM may be configured on a device-by-device basis. In general, a log containing the last 35 transactions is
recommended.

When recovering from an outage, an EGM MUST retry all critical transactions for which the EGM has not
received and processed a response command from the host. Due to timing differences, this process may cause
the EGM to send duplicate commands to the host. The host MUST be aware of this possibility and be
prepared to detect duplicate logical commands coming from an EGM.

Within the voucher class, the EGM MUST store critical data related to voucher issuance and redemption
operations in persistent memory. This data MUST include all data necessary to construct accurate voucher
commands when normal operations are resumed following an EGM failure. See Chapter 1 for more details on
transaction logs.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 12 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.6 Log Sequence Numbers
The EGM MUST assign a log sequence number, logSequence, to each entry in its voucher log. A single log is
used for all devices within the voucher class. The EGM MUST generate the log sequence numbers as a
sequence that strictly increases by 1 (one) starting at 1 (one). The EGM MUST maintain the counter used to
generate the log sequence numbers in persistent memory. Within a single transaction log, the log sequence
numbers MUST appear as an unbroken series that strictly increases by 1 (one). See Chapter 1 for more details
on log sequence numbers.

Log sequence numbers identify the sequence of transactions within a single transaction log. Transaction
identifiers uniquely identify an individual transaction. Both are generated as series that strictly increases by 1
(one); however, they serve two completely different purposes.

A redeemVoucher request may result in the voucher being returned to the player. Like any other voucher
transaction, the EGM MUST record such a transaction in persistent memory until it is acknowledged.
However, a player could repeatedly insert an invalid voucher, causing the contents of the voucher log to be
filled with voucher rejections. All other transactions would be flushed. For this reason, if the most recent
transaction in the voucher log is from a failed redemption request that has been committed and acknowledged,
the EGM MUST overwrite that log entry with any subsequent voucher transactions. In this case, the
logSequence MUST NOT be incremented. The same logSequence MUST be used for the subsequent
transaction. However, a new transactionId MUST be assigned. If the most recent transaction in the voucher
log is from a failed redemption request where the voucher was rejected, and the transaction has not been
acknowledged then the EGM MUST initiate a new log entry, assigning a new logSequence and a new
transactionId. The EGM MUST NOT initiate a redemption request using a voucher device when there are
any unacknowledged transactions in the log for the same voucher device.

• Thus, the voucher log MAY contain more than one unacknowledged redemption request, but MUST
NOT contain more than one unacknowledged redemption request for any particular voucher device.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 13
© 2019 Gaming Standards Association (GSA)

21.7 Request-Response Pairs
The following tables organize the commands contained within the voucher class into request-response pairs:

• Unless an error code is being reported, the specified response MUST be generated as the response to
the specified request.

• If the "Owner" column indicates "Yes", the specified response MUST NOT be generated by the
EGM unless the specified request is sent from the owner of the device. See Section 1.10.3, Registered
Hosts, for more details.

• If the "Guest" column indicates "Yes", the specified response MUST NOT be generated by the EGM
unless the specified request is sent from the owner or a guest of the device. See Section 1.10.3,
Registered Hosts, for more details.

• For commands originated by the host, if the "OK When Disabled" column indicates "Yes", the
specified response MUST be generated by the EGM, as appropriate, when the device is disabled. See
Section 1.10.6.3, Commands Not Allowed When Device Disabled, for more details.

• For commands originated by the EGM, if the "OK When Disabled" column indicates "Yes", the
specified request or notification MUST be generated by the EGM, as appropriate, when the device is
disabled. See Section 1.10.6.3, Commands Not Allowed When Device Disabled, for more details.

Table 21.7 Commands Originated by EGM

Request Response

OK When

Disabled

getValidationData validationData *

* The EGM MUST NOT generate getValidationData commands when hostEnabled is
set to false. The EGM MAY generate getValidationData commands normally when
hostEnabled is set to true, regardless of the value of egmEnabled.

issueVoucher issueVoucherAck Yes

redeemVoucher authorizeVoucher No

commitVoucher commitVoucherAck Yes

Table 21.8 Commands Originated by Host

Request Response Owner Guest

OK When

Disabled

setVoucherState voucherStatus Yes No Yes

setVoucherLockOut voucherStatus Yes No Yes*

getVoucherStatus voucherStatus Yes Yes Yes

getVoucherProfile voucherProfile Yes Yes Yes

getVoucherLogStatus voucherLogStatus Yes Yes Yes

getVoucherLog voucherLogList Yes Yes Yes

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 14 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.7.1 Owner-Controlled Parameters
The following table identifies the owner-controlled parameters for this class and the required behavior when
those parameters are required to be reset.

* EGMs MUST NOT process this request for a disabled device if the lockOut attribute for
the request is set to true; when the lockOut attribute is set to false, the EGM MUST
process the request as if the device were enabled. If the EGM does not process a request
because the device is disabled then the EGM MUST generate a G2S_APX016 Command
Not Processed, Device Disabled error response.

Table 21.9 Owner-Controlled Parameters

Command Required Behavior

setVoucherState Unchanged.

setVoucherLockOut If hostLocked is set to true, hostLocked MUST be set to false and event
G2S_VCE010 Device Not Locked by Host MUST be generated; otherwise
unchanged.

validationData If the validation ID data is not expired, the validation ID data MUST be
expired and event G2S_VCE101 Validation ID Data Expired MUST be
generated; otherwise unchanged.

authorizeVoucher If voucher redemptions are pending or in process, if possible, the voucher
redemptions MUST be aborted and event G2S_VCE109 Voucher Rejected
MUST be generated with egmException set to 99; otherwise unchanged.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 15
© 2019 Gaming Standards Association (GSA)

21.8 setVoucherState Command

21.8.1 Command Description
This command is used by a host to enable or disable the voucher functionality of an EGM. Only the owner of
the device can execute this command. The voucherStatus command is generated in response to the
setVoucherState command.

The voucher device MAY be disabled at any time by the host. If the voucher device is disabled while a
voucher-related transaction is active, the EGM MUST, if possible, abort the transaction and report the result
of the transaction to the host. If the transaction has already been committed and cannot be aborted, the EGM
MUST continue processing the transaction and report the result of the transaction to the host. In general,
while a device is disabled, the EGM MUST attempt to report each untried transaction for the device once. If
such a transaction is not acknowledged by the host, the EGM SHOULD wait until the device is re-enabled
before retrying that transaction. While the voucher device is disabled, the EGM MUST process any
acknowledgements received from the host as normal. If the idReader device associated with the voucher
device is disabled, the voucher device MUST act as if no ID is present. While the voucher device is disabled,
the EGM MUST NOT initiate any new transactions related to the voucher device.

When the voucher device is disabled by the host — that is, hostEnabled is set to false — the
valIdListLife timer in the voucherProfile MUST be expired to allow an orderly restart of the voucher
device by the host. The valIdListLife timer MUST NOT be expired when egmEnabled is set to false.

The text message contained in the disableText attribute becomes eligible for display when the device
becomes disabled — that is, following the G2S_VCE003 Device Disabled by Host event. The text message is
no longer eligible for display once the device is re-enabled — that is, following the G2S_VCE004 Device Not
Disabled by Host event. The text message is superseded by a subsequent setVoucherState command for the
same device. If the text message is empty, the text message MUST NOT be displayed. See Section 3.7 for more
details regarding the display of text messages.

21.8.2 Attribute and Element Detail

Table 21.10 setVoucherState Attributes

Attribute Restrictions Description

enable type: xs:boolean
use: optional
default: true

Indicates whether vouchers should be enabled.

disableText type: t_textMessage
use: optional
default: <empty>

Text message to display while the device is disabled.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 16 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.9 setVoucherLockOut Command

21.9.1 Command Description
This command is used by a host to lock the EGM. See Section 3.4, Disable, Lockout, and Cabinet State, for
more details. Only the owner of the device can execute this command. The voucherStatus command is
generated in response to the setVoucherLockOut command.

The text message contained in the lockText attribute becomes eligible for display when the EGM is locked by
the device — that is, following the G2S_CBE211 Host Action Locked EGM event. The text message is no
longer eligible for display once the EGM is no longer locked by the device — that is, following the G2S_VCE010
Device Not Locked by Host event. The text message is superseded by a subsequent setVoucherLockOut
command for the same device. If the text message is empty, the text message MUST NOT be displayed. See
Section 3.7 for more details regarding the display of text messages.

21.9.2 Attribute and Element Detail

Table 21.11 setVoucherLockOut Attributes

Attribute Restrictions Description

lockOut type: xs:boolean
use: optional
default: false

Indicates whether the EGM should be locked.

lockText type: t_textMessage
use: optional
default: <empty>

Text message to display while the EGM is locked by the
device.

lockTimeOut type: t_lockTimeOut
use: optional
default: 1000

Maximum duration of the lock, in milliseconds. If a lock has
not been removed within the specified time, the EGM
should remove the lock.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 17
© 2019 Gaming Standards Association (GSA)

21.10 getVoucherStatus Command

21.10.1 Command Description
This command is used by a host to request the current status of the voucher functionality from the EGM. The
voucherStatus command is generated in response to getVoucherStatus.

21.10.2 Attribute and Element Detail

The getVoucherStatus command has no attributes or sub-elements.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 18 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.11 voucherStatus Command

21.11.1 Command Description
This command is used by an EGM to report the current status of the voucher device. The voucherStatus
command is generated in response to getVoucherStatus, setVoucherState, and setVoucherLockOut
commands.

The systemOnLine attribute indicates whether the validation system is online. The systemOnLine attribute
MUST be set to false when either of the following occurs:

• The transportState attribute of the commsStatus command for the voucher host’s communication
device is set to anything other than G2S_transportUp.

• The EGM issues a voucher and does not receive an issueVoucherAck command for the voucher
within the time interval specified by the noAckTimer attribute of the voucherProfile.

Whenever the state of the systemOnLine attribute changes from true to false, the EGM MUST generate
event G2S_VCE112 Validation System Offline.

The systemOnLine attribute MUST be set to true when both of the following conditions are true:

• The transportState attribute is set to G2S_transportUp.

• The EGM has received issueVoucherAck commands for all issued vouchers.

Whenever the state of the systemOnLine attribute changes from false to true, the EGM MUST generate
event G2S_VCE113 Validation System Not Offline.

21.11.2 Attribute and Element Detail

21.11.1.1 systemOnLine Attribute

Extension in v3.0: g2sVSO

Table 21.12 voucherStatus Attributes (Sheet 1 of 2)

Attribute Restrictions Description

configurationId type: t_configurationId
use: optional
default: 0

Configuration identifier set by the
optionConfig host.

egmEnabled type: xs:boolean
use: optional
default: true

Indicates whether the device has been enabled
by the EGM.

hostEnabled type: xs:boolean
use: optional
default: true

Indicates whether the device has been enabled
by the voucher host.

hostLocked type: xs:boolean
use: optional
default: false

Indicates whether the voucher device has been
locked by the host.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 19
© 2019 Gaming Standards Association (GSA)

validationListId type: t_validationListId
use: required

Validation list identifier sent by the host in the
most recent validationData command.

Extension in v3.0: g2sVSO

systemOnLine type: xs:boolean
use: optional
default: true

Indicates whether the validation system is
online.

Table 21.12 voucherStatus Attributes (Sheet 2 of 2)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 20 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.12 getVoucherProfile Command

21.12.1 Command Description
This command is used by a host to request the current voucher profile from an EGM. The voucher profile
contains the protocol-related configuration option selections for the voucher device. A voucherProfile
command is generated in response to the getVoucherProfile command.

21.12.2 Attribute and Element Detail

The getVoucherProfile command has no attributes or sub-elements.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 21
© 2019 Gaming Standards Association (GSA)

21.13 voucherProfile Command

21.13.1 Command Description
This command is used by an EGM to report the current profile of a voucher device. The voucher profile
contains the protocol-related configuration option selections for the voucher device. The configuration
options can be set locally at the EGM or remotely via a configuration server using commands within the
optionConfig class. The voucherProfile command is generated in response to a getVoucherProfile
command.

Much of the static data to be printed on vouchers is provided as configuration options. The number of
characters noted in the description of many of these attributes designates the maximum number of characters
that can be printed on a standard G2S voucher in the area reserved for the attribute.

The expireCashPromo attribute specifies the number of days before a newly issued cashable or promotional
voucher expires. The expireNonCash attribute specifies the default number of days before a newly issued
nonCashable voucher expires. These values usually indicate when the voucher expires for use at an EGM. The
system may have a separate, later expiration for redemption at the casino cage or cashier’s booth. The
printExpCashPromo attribute controls whether or not the EGM actually prints the expiration on cashable
and promotional vouchers. The printExpNonCash attribute controls whether or not the EGM actually prints
the expiration on nonCashable vouchers.

21.13.2 Attribute and Element Detail

Table 21.13 voucherProfile Attributes (Sheet 1 of 5)

Attribute Restrictions Description

configurationId * type: t_configurationId
use: optional
default: 0

Last configuration identifier set by a G2S host;
set to 0 (zero) when configuration changes are
made by hosts other than G2S hosts.

restartStatus * type: xs:boolean
use: optional
default: true

Extension in v2.1: g2sA

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 22 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

Indicates the state of the hostEnabled
attribute upon EGM restart.

When restartStatusMode is set to true, a
value of true indicates that hostEnabled must
be set to its last known state; a value of false
indicates that hostEnabled must be set to
false.

When restartStatusMode is set to false, a
value of true indicates that hostEnabled must
be set true; a value of false indicates that
hostEnabled must be set to false.

requiredForPlay * type: xs:boolean
use: optional
default: false

Indicates whether the EGM MUST be
disabled if either egmEnabled or hostEnabled
is set to false.

minLogEntries type: xs:int
use: optional
default: 35
minIncl: 1

Indicates the minimum number of log entries
that the EGM MUST maintain in persistent
memory.

timeToLive * type: t_timeToLive
use: optional
default: 30000

Time-to-live value for requests originated by
the device.

idReaderId * type: t_deviceId
use: optional
minIncl: 0
default: 0

Device identifier of the idReader device
associated with the voucher device; set to 0
(zero) if there is no associated idReader
device. Wildcards not permitted.

combineCashableOut * type: xs:boolean
use: optional
default: false

Indicates whether promotional credits MUST
be converted to cashable credits when issuing
vouchers.

allowNonCashOut * type: xs:boolean
use: optional
default: true

Indicates whether the EGM is allowed to issue
non-cashable vouchers for cash-outs when
vouchers are enabled.

maxValIds * type: xs:int
use: optional
default: 20
minIncl: 1

Maximum number of validation identifiers the
EGM may buffer.

minLevelValIds * type: xs:int
use: optional
default: 15
minIncl: 0

Minimum level (number) of validation
identifiers that the EGM should have at all
times. Whenever the current number of
Validation identifiers reaches this number the
EGM must request additional identifiers to
reach the number defined by the maxValIds
field.

Table 21.13 voucherProfile Attributes (Sheet 2 of 5)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 23
© 2019 Gaming Standards Association (GSA)

valIdListRefresh * type: t_milliseconds
use: optional
default: 43200000

A timer is reset to this value each time EGM
receives a validationData command. The
default equates to 12 hours. If the timer
expires, EGM MUST generate the
getValidationData command.

valIdListLife * type: t_milliseconds
use: optional
default: 86400000

A timer is reset to this value each time the
EGM receives a validationData command.
The default equates to 24 hours. Validation
identifiers MUST NOT be used while timer is
expired.

voucherHoldTime * type: t_milliseconds
use: optional
default: 15000

Sets the maximum amount of time an EGM
should wait for a response to a redeemVoucher
command before rejecting a voucher.

printOffLine * type: xs:boolean
use: optional
default: true

Indicates whether vouchers can be issued
while the validation system is offline (see
Section 21.3.2, Validation System Offline, for
more details); true indicates that vouchers can
be issued; false indicates that vouchers
cannot be issued.

expireCashPromo * type: xs:int
use: optional
default: 30
minIncl: 0

Number of days before cashable and
promotional vouchers expire.

printExpCashPromo * type: xs:boolean
use: optional
default: true

Indicates whether expirations are printed on
cashable and promotional vouchers.

expireNonCash * type: xs:int
use: optional
default: 30
minIncl: 0

Default number of days before non-cashable
vouchers expire.

printExpNonCash * type: xs:boolean
use: optional
default: true

Indicates whether expirations are printed on
non-cashable vouchers.

propName * type: t_voucherTitle40
use: required

Name of the property.

propLine1 * type: t_voucherTitle40
use: required

First address line of the property.

propLine2 * type: t_voucherTitle40
use: required

Second address line of the property.

titleCash * type: t_voucherTitle16
use: required

Title printed on vouchers for cashable credits.

Table 21.13 voucherProfile Attributes (Sheet 3 of 5)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 24 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

titlePromo * type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers for promotional
credits. If not specified, use the value of the
titleCash attribute.

titleNonCash * type: t_voucherTitle16
use: required

Title printed on vouchers for non-cashable
credits.

titleLargeWin * type: t_voucherTitle16
use: required

Title printed on vouchers for wins greater than
cabinetProfile.largeWinLimit.

titleBonusCash * type: t_voucherTitle16
use: required

Title printed on vouchers printed as a result of
external bonus awards of cashable amounts.

titleBonusPromo * type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers printed as a result of
external bonus awards of promotional
amounts. If not specified, use the value in the
titleBonusCash attribute.

titleBonusNonCash * type: t_voucherTitle16
use: required

Title printed on vouchers printed as a result of
external bonus awards of non-cashable
amounts.

titleWatCash * type: t_voucherTitle16
use: required

Title printed on vouchers printed as a result of
WAT transfers of cashable amounts.

titleWatPromo * type: t_voucherTitle16
use: optional
default: <empty>

Title printed on vouchers printed as a result of
WAT transfers of promotional amounts. If not
specified, use the value in the titleWatCash
attribute.

titleWatNonCash * type: t_voucherTitle16
use: required

Title printed on vouchers printed as a result of
WAT transfers of non-cashable amounts.

Extension in v2.0.0: g2s1

allowVoucherIssue * type: xs:boolean
use: optional
default: true

Indicates whether the voucher device supports
validation data functionality; does not (directly)
control voucher issuance.

allowVoucherRedeem * type: xs:boolean
use: optional
default: true

Indicates whether the voucher device supports
voucher redemption functions.

maxOnLinePayOut * type: t_meterValue
use: optional
default: 0

Maximum value that can be paid using a
voucher while communications to the host,
which owns the voucher device, are active.
The value 0 (zero) indicates that there is no
limit.

Table 21.13 voucherProfile Attributes (Sheet 4 of 5)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 25
© 2019 Gaming Standards Association (GSA)

maxOffLinePayOut * type: t_meterValue
use: optional
default: 0

Maximum value that can be paid using a
voucher while the validation system is offline
(see Section 21.3.2, Validation System Offline,
for more details). The value 0 (zero) indicates
that there is no limit.

printNonCashOffLine * type: xs:boolean
use: optional
default: true

Indicates whether non-cashable vouchers can
be issued while the validation system is offline
(see Section 21.3.2, Validation System Offline,
for more details). To issue non-cashable
vouchers while the validation system is offline,
both printOffLine and allowNonCashOut
MUST also be set to true. Note that manual
authentication identifiers are only printed on
non-cashable vouchers when
printNonCashOffLine is set to true.

Extension in v3.0: g2s3

usePlayerIdReader * type: xs:boolean
use: optional
default: false

Indicates which idReader device to associate
with the voucher device. When set to true, the
EGM MUST use the idReader device
associated with the currently active player
session; otherwise, the EGM MUST use the
idReader device specified in the idReaderId
attribute of the voucherProfile command.

Extension in v3.0: g2sVSO

noAckTimer * type: t_milliseconds
use: optional
default: 15000

Indicates the maximum time between when a
voucher is issued (when the voucher is printed)
and when the issueVoucherAck command for
the voucher is received before the validation
system is declared offline.

Extension in v3.0: g2sVSO1

enableHandpayVoucher * type: xs:boolean
use: optional
default: false

Indicates whether Offline Handpay Vouchers
are enabled.

titleHandpayVoucher * type: t_voucherTitle16
use: optional
default: "HANDPAY
VOUCHER"

Title printed on Offline Handpay Vouchers.

* Standard configuration option that MUST be included in the standard option configuration group –
G2S_voucherOptions – for devices within the voucher class.

Table 21.13 voucherProfile Attributes (Sheet 5 of 5)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 26 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.14 getValidationData Command

21.14.1 Command Description
This command is used by an EGM to request new validation identifiers and seeds from a host. All issued
vouchers MUST be acknowledged and hostEnabled MUST be set to true before the getValidationData
command may be issued by the EGM. The getValidationData command MAY be issued regardless of the
state of the egmEnabled attribute. For example, if the egmEnabled attribute has been set to false because the
EGM has run out of validation IDs or the validation IDs have expired, provided that hostEnabled has not
been set to false, the EGM MAY continue to request new validation data from the host. The EGM will
include the most recent validationListId received from the host, if any. In this way, the host can verify
whether the EGM currently has valid data. The numValidationIds attribute indicates how many validation
identifiers the EGM needs to refill its buffer (to maxValIds). The validationData command is generated in
response to the getValidationData command.

If all issued vouchers have been acknowledged and hostEnabled is set to true, the EGM MUST generate the
getValidationData command under the following circumstances:

• When the EGM needs to replenish its validation identifier list based on minLevelValIds.

• When the valIdListRefresh timer or the valIdListLife timer is expired.

Once the EGM has determined that the validation data list needs to be refreshed, the EGM MUST continue
to retry the getValidationData command at the frequency set in the timeToLive attribute of the
voucherProfile command until acknowledged by a validationData command. See Section 1.22.4,
Command Retry, for more details.

If the voucher device is enabled, the valIdListLife timer is not expired, and the EGM still has unused
validation identifiers, the EGM may continue to issue vouchers while waiting for the validationData
command. If the number of validation identifiers currently available on the EGM is higher than
minLevelValIds then the numValidationIds attribute should be set to 0 (zero).This tells the host that the
EGM does not currently need additional validation identifiers. The host may optionally send zero new
identifiers to refresh the timers.

If the EGM does not currently have any validation identifiers or the valIdListLife timer has expired, the
egmEnabled attribute MUST be set to false. Similarly, if the printOffLine attribute of the voucherProfile is
set to false and the validation system is offline (see Section 21.3.2, Validation System Offline, for more
details), the egmEnabled attribute MUST be set to false.

If the valIdListLife timer is expired at the time this command is issued, the valIdListExpired attribute
MUST be set to true. This most likely indicates the EGM has been offline for an extended period of time or
the voucher device has been disabled. The host may completely replace any validation data remaining in the
EGM’s buffer by sending the validationData command with the deleteCurrent attribute set to true and
including validation identifiers and seeds up to the number specified in the maxValIds profile attribute.
Alternatively, the host may simply refresh the valIdListLife timer by sending the validationData command
with deleteCurrent set to false and including 0 (zero) or more validation identifiers and seeds up to the
number requested in the numValidationIds attribute. In this case, the EGM MUST continue to use any
remaining previous validation IDs before using the new IDs.

When the allowVoucherIssue profile attribute is set to false for a voucher device:

21.14.1.1 allowVoucherIssue Attribute

Extension in v2.0.0: g2s1

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 27
© 2019 Gaming Standards Association (GSA)

• The EGM MUST NOT place any getValidationData commands for the voucher device in an
outbound queue.

• The EGM MUST NOT disable the voucher device because the device does not currently have any
validation identifiers or the valIdListLife timer has expired.

21.14.2 Attribute and Element Detail

Table 21.14 getValidationData Attributes

Attribute Restrictions Description

configurationId type: t_configurationId
use: required

Configuration identifier set by the optionConfig
host.

validationListId type: t_validationListId
use: required

The validationListId that was received in the most
recent validationData command, or set to 0 (zero)
if EGM has never received any validation identifiers.

numValidationIds type: xs:int
use: optional
default: 0
minIncl: 0

Number of validation identifiers that the host should
send to the EGM.

valIdListExpired type: xs:boolean
use: optional
default: false

Indicates whether the valIdListLife timer has
expired.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 28 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.15 validationData Command

21.15.1 Command Description
This command is sent from a host to provide new validation identifier and seed pairs to an EGM. The
validationData command is generated in response to the getValidationData command.

The validationListId attribute is an arbitrary value provided by the host to track validation identifiers. The
host can subsequently use this value to determine that an EGM has the validation identifiers that the host
expects it to have.

The host may use the deleteCurrent attribute to instruct the EGM to delete any remaining validation
identifiers and seeds before adding the new identifiers to its buffer. A host may want to use this if, for example,
an EGM comes online with a validationListId the host does not recognize. If deleteCurrent is set to
false, the EGM MUST add the new identifiers to its buffer, following any existing identifiers. Validation
identifiers MUST be used in the order provided.

After new validation identifiers, if any, have been placed in the buffer and all outstanding issueVoucher
commands have been acknowledged, the EGM MUST generate the G2S_VCE102 Validation ID Data
Updated event.

If any of the new validation identifiers or seeds cannot be used, for example if a validation ID includes non-
numeric data or the command includes more validation identifiers than the EGM can buffer, the EGM MUST
NOT use any of the new identifiers. The EGM MUST NOT delete any existing validation identifiers, refresh
its valIdListLife timer, or generate the G2S_VCE102 Validation ID Data Updated event. Instead, the EGM
SHOULD generate the G2S_APE001 At Least One Syntax/Semantic Command Error event and include a
text string describing the nature of the error.

21.15.2 Attribute and Element Detail

Table 21.15 validationData Attributes

Attribute Restrictions Description

validationListId type: t_validationListId
use: required

Identifier for the list of validation identifiers.
Arbitrarily assigned by the host.

deleteCurrent type: xs:boolean
use: optional
default: false

Indicates whether EGM should delete all current
validation identifiers before adding new identifiers.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 29
© 2019 Gaming Standards Association (GSA)

Table 21.16 validationData Elements

Element Restrictions Description

validationIdItem minOcc: 0
maxOcc:

Contains a validation identifier. See attributes in Table 21.17.

Table 21.17 validationIdItem Attributes

Attribute Restrictions Description

validationId type: t_validationId
use: required

Validation identifier. This number is printed on the
voucher and used to create the manual authentication
identifier.

validationSeed type: t_validationSeed
use: required

Corresponding seed value used to create a manual
authentication identifier.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 30 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.16 issueVoucher Command

21.16.1 Command Description
This command is used by an EGM to notify a host that a voucher has been issued. The issueVoucherAck
command is generated in response to the issueVoucher command.

The issueVoucher command and related events SHOULD be generated as soon as the EGM is irreversibly
committed to the voucher issuance operation and the associated credits have been removed from the credit
meter. The EGM SHOULD NOT wait until the final results of the print operation are known. Waiting for the
final results of the print operation could cause significant delays in reporting that the voucher issuance
operation had taken place. Presentation errors MAY be reported by setting the egmException attribute of the
issueVoucher command to 1 (one). However, reporting any such errors SHOULD NOT delay the reporting
of the voucher issuance operation.

EGM-originated print operations, including voucher issuance operations, are recorded in the printer class log.
Host systems can monitor events within the printer class and inspect the printer class log to determine
whether presentation errors are occurring.

The EGM MUST continue to retry the issueVoucher command until a valid issueVoucherAck command is
received.

Before cashing out non-cashable credits to a voucher, the following rules MUST be applied:

• If the allowNonCashOut attribute of the voucherProfile is set to true and there is no expiration
associated with the non-cashable credits, the EGM MAY produce a voucher for the credits. The
default expireNonCash expiration MUST be used for the voucher. Note, this expiration applies only
to the voucher, not to the non-cashable credits themselves.

• If the allowNonCashOut attribute of the voucherProfile is set to true, there is an expiration
associated with the non-cashable credits, and the current date and time is the same as or prior to that
expiration, the EGM MAY produce a voucher for the credits.

• If the allowNonCashOut attribute of the voucherProfile is set to true, there is an expiration
associated with the non-cashable credits, and the current date and time is after that expiration, the
EGM MUST NOT produce a voucher for the credits.

• If the allowNonCashOut attribute of the voucherProfile is set to false, the EGM MUST NOT
produce a voucher for non-cashable credits.

It is important to note that promotional credits are fully cashable by the player. The only difference is in the
accounting. While it is advantageous to the casino to maintain the promotional status of cashable promotional
credits when cashing out to a voucher, it is usually undesirable for the player to receive two cashable vouchers
for one cash-out. When cash-out vouchers are generated, the combineCashableOut configuration controls
whether the EGM MUST convert promotional credits to cashable when printing a voucher. If promotional
credits are converted to cashable the promotional status of the promotional credits is lost. If the EGM has
nonCashable credits, the EGM MUST always generate a separate voucher for this credit type. If
combineCashableOut is set to false, the EGM may therefore be required to generate up to three vouchers to
fully cash out all credits on an EGM.

With the G2S protocol, vouchers may be issued in response to player cash-out requests or due to machine
limitations such as a win that does not fit in the credit meter. Under certain circumstances, vouchers may also
be issued for large wins that cannot be paid directly by the EGM because of regulatory requirements, such as
W-2Gs in the USA (i.e. wins greater than cabinetProfile.largeWinLimit). If a voucher is issued as a result
of a large win handpay being keyed off to a voucher, the largeWin attribute MUST be set to true by the EGM

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 31
© 2019 Gaming Standards Association (GSA)

when the voucher is issued. Subsequently, when the player attempts to redeem the voucher, based on
jurisdictional requirements, the host will determine whether the voucher can be redeemed at an EGM. Note
that "large win" is not related to whether the win initially resulted in a handpay. It is based solely on whether
the win resulted in a handpay because of the cabinetProfile.largeWinLimit.

For vouchers other than cash-outs from the credit meter, references to the direct source transactions MUST be
included in the voucherSourceRef sub-elements of the issueVoucher element. For example, this includes
vouchers produced as a result of handpay, game play, progressive, bonus, and WAT transactions, as well as
change vouchers from redeemVoucher transactions. Note that, for example, if a win results in a handpay which
is subsequently keyed off to a voucher, only the handpay is considered a source transaction, not the game play.
The handpay log entry will provide the linkage between the game play and the voucher.

If the EGM has access to player identification information, it MUST be sent to the host to identify the active
player at the time the voucher was issued.

The host must make a best-effort to acknowledge issueVoucher commands. Class-specific application-level
error codes MUST NOT be used. Until acknowledged, the EGM MUST continue to retry the commands at
the frequency set in the timeToLive attribute of the voucherProfile command. See Section 1.22.4, Command
Retry, for more details. Failure to acknowledge the commands may cause the log to fill up, the voucher device
to be disabled, and a loss of functionality. See Section 1.18.4, Committed Transactions, for more details.

21.16.1.1 Duplicate Commands

The host MUST consider an issueVoucher command logically equivalent to a previous issueVoucher
command if the host detects that the transactionId associated with the voucher issuance was reported in a
previous issueVoucher command for the same EGM since the last time that non-volatile storage was cleared
on the EGM. In such cases, the host MUST generate a logically equivalent issueVoucherAck command in
response to the issueVoucher command.

21.16.2 Attribute and Element Detail

Table 21.18 issueVoucher Attributes (Sheet 1 of 3)

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

idReaderType type: t_idReaderTypes
use: optional
default: G2S_none

The idReaderType of the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to G2S_none.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 32 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

idNumber type: t_idNumber
use: optional
default: <empty>

The idNumber present in the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to <empty>.

playerId type: t_playerId
use: optional
default: <empty>

The playerId present in the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to <empty>.

validationId type: t_validationId
use: required

Voucher identifier.

voucherAmt type: t_meterValue
use: required

Voucher amount.

creditType type: t_creditTypes
use: required

Credit type: G2S_cashable, G2S_promo, or
G2S_nonCash.

voucherSource type: t_voucherSources
use: optional
default: G2S_egmIssued

Indicates voucher was issued by the EGM.

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued as the
result of a large win.

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

Internal EGM voucher issuance sequence
number printed on the voucher. Number must
start at 1 (one) and roll over to 1 (one) when it
reaches 9999.

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether voucher was issued using
date/time expiration provided when non-
cashable credits were transferred to the EGM
(true), or default [n] days expiration (false).

expireDateTime type: t_g2sDateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration of voucher in date/time (only valid if
expireCredits is set to true).

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred. This MUST be equal
to the voucherAmt attribute.

transferDateTime type: t_g2sDateTime
use: required

Date/time that the voucher was issued;
SHOULD be the same as the date/time printed
on the voucher and the same as the date/time
displayed by the EGM in its operator logs.

expireDays type: xs:int
use: optional
default: -1
minIncl: -1

Expiration of voucher in number of days (only
valid if expireCredits is set to false). -1
indicates no expiration is provided.

Table 21.18 issueVoucher Attributes (Sheet 2 of 3)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 33
© 2019 Gaming Standards Association (GSA)

egmAction type: t_egmVoucherActions
use: required

Type of action taken: G2S_issued.

egmException type: t_egmVoucherExceptions
use: optional
default: 0

Indicates voucher issued or partial voucher
issued (presentation error).

Table 21.19 issueVoucher Elements

Element Restrictions Description

voucherSourceRef minOcc: 0
maxOcc:

Contains information about any associated
transaction. See attributes in Table 21.20.

Table 21.20 voucherSourceRef Attributes

Attribute Restrictions Description

deviceClass type: t_deviceClass
use: required

Device class of the associated transaction. Wildcards not
permitted.

deviceId type: t_deviceId
use: required

Device identifier of the associated transaction. Wildcards
not permitted.

transactionId type: t_transactionId
use: required
minIncl: 1

Transaction identifier of the associated transaction.

logSequence type: t_logSequence
use: required

Log sequence of the associated transaction.

cashableAmt type: t_meterValue
use: optional
default: 0

Cashable amount of the associated transaction.

promoAmt type: t_meterValue
use: optional
default: 0

Promotional amount of the associated transaction.

nonCashAmt type: t_meterValue
use: optional
default: 0

Non-cashable amount of the associated transaction.

Table 21.18 issueVoucher Attributes (Sheet 3 of 3)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 34 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.17 issueVoucherAck Command

21.17.1 Command Description
This command is used by a host to acknowledge the receipt of an issueVoucher command from an EGM (see
Section 21.3.2, Validation System Offline, for more details).

21.17.1.1 Duplicate Commands

The EGM MUST consider an issueVoucherAck command logically equivalent to a previous
issueVoucherAck command if the EGM detects from its voucher class log that the voucher issuance
associated with the transactionId has already been acknowledged — that is, the state of the voucher is no
longer G2S_issueSent. In such cases, the EGM MUST NOT generate any additional G2S_VCE105 Voucher
Issue Command Acknowledged events.

21.17.2 Attribute and Element Detail

Table 21.21 issueVoucherAck Attributes

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 35
© 2019 Gaming Standards Association (GSA)

21.18 redeemVoucher Command

21.18.1 Command Description
This command is used by an EGM to send a voucher redemption request to a host. The redeemVoucher
command identifies a voucher that has been inserted in the EGM’s note acceptor. The authorizeVoucher
command is generated in response to the redeemVoucher command to indicate whether the voucher is valid.

If the redemption is not authorized within the time specified in the voucherHoldTime attribute, the EGM
MUST reject the voucher and generate a commitVoucher command indicating that the voucher was rejected
due to a timeout (egmException = "5"). If an authorizeVoucher command is received subsequently, or at any
time a voucher is not being held in escrow, the EGM should ignore the command. While waiting for the
voucherHoldTime to expire, the EGM MUST continue to retry the redeemVoucher command at the frequency
set in the timeToLive attribute of the voucherProfile command. See Section 1.22.4, Command Retry, for
more details.

After issuing a redeemVoucher command, after the voucher is stacked or rejected, the EGM MUST always
generate a commitVoucher command to report the final disposition of the voucher redemption request. Even
if the EGM does not receive an authorizeVoucher command or receives an error in response to the
redeemVoucher command, the EGM MUST still generate a commitVoucher command for the host to confirm
the outcome of the redemption request.

If the EGM has access to player identification information, it MUST send this information to the host to allow
the host to apply any card restrictions to the voucher redemption.

21.18.1.1 Duplicate Commands

The host MUST consider a redeemVoucher command logically equivalent to a previous redeemVoucher
command if the host detects that the transactionId associated with the voucher redemption request was
reported in a previous redeemVoucher or commitVoucher command for the same EGM since the last time that
non-volatile storage was cleared on the EGM. In such cases, the host MUST generate a logically equivalent
authorizeVoucher command in response to the redeemVoucher command.

When the allowVoucherRedeem profile attribute is set to false for a voucher device the EGM MUST NOT
generate the redeemVoucher command for the voucher device.

21.18.2 Attribute and Element Detail

21.18.1.2 allowVoucherRedeem Attribute

Extension in v2.0.0: g2s1

Table 21.22 redeemVoucher Attributes (Sheet 1 of 2)

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 36 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

idReaderType type: t_idReaderTypes
use: optional
default: G2S_none

The idReaderType of the idReader device associated
with the voucher device. If no idReader device is
associated or the device is disabled then set to G2S_none.

idNumber type: t_idNumber
use: optional
default: <empty>

The idNumber present in the idReader device associated
with the voucher device. If no idReader device is
associated or the device is disabled then set to <empty>.

playerId type: t_playerId
use: optional
default: <empty>

The playerId present in the idReader device associated
with the voucher device. If no idReader device is
associated or the device is disabled then set to <empty>.

validationId type: t_validationId
use: required

Voucher identifier.

Table 21.22 redeemVoucher Attributes (Sheet 2 of 2)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 37
© 2019 Gaming Standards Association (GSA)

21.19 authorizeVoucher Command

21.19.1 Command Description
This command is used by the host to authorize or deny the redemption of a voucher. The authorizeVoucher
command contains the information the EGM requires to perform the redemption. The authorizeVoucher
command is generated in response to a redeemVoucher command.

To authorize the redemption of a voucher, the host MUST set the voucherAmt to a non-zero value and MUST
set the hostException attribute to 0 (zero). The host can set the voucherSource attribute to
G2S_systemIssued to indicate that the voucher was issued by the system as part of a promotion, or
G2S_egmIssued to indicate the voucher was printed by another EGM, or a kiosk or similar process. This can be
used in jurisdictions where the voucher expense for EGM-issued vouchers is taken at the time of redemption.
System-issued vouchers have no corresponding deduction and therefore MUST be metered separately from
EGM-issued vouchers. In jurisdictions where this is not an issue, all vouchers can be redeemed and metered as
EGM-issued vouchers.

For non-cashable vouchers, the host may optionally specify an expiration to be assigned to those specific non-
cashable credits by specifying a date/time in the expireDateTime attribute and setting the expireCredits
attribute to true. If the expireCredits attribute is false, the credits do not have any specific expiration
associated with them. See Section 3.18, cabinetProfile Command for more details regarding acceptance of
non-cashable credits.

If the host determines that the voucher is not valid for redemption on the EGM, the voucherAmt MUST be set
to 0 (zero) and the hostException attribute MUST be set to a non-zero value, indicating the reason for
rejection. The creditType, voucherSource, largeWin, voucherSequence, expireCredits, and
expireDateTime attributes are not used and may be set to any syntactically correct value.

The host may use the hostAction attribute to force an EGM to stack a voucher that is not valid, or force the
EGM to reject the voucher following a valid redemption. If the host authorizes redemption and the EGM is
unable to redeem the voucher for any reason, the EGM MUST reject the voucher regardless of the
hostAction value. The host should use this attribute with extreme caution. The hostAction attribute may be
set to one of three values:

• G2S_egmAction tells the EGM to perform its normal action of stacking or rejecting a voucher; for
example, stacking a redeemed voucher and rejecting all others.

• G2S_stack tells the EGM to stack a voucher following successful completion of the
authorizeVoucher command as directed by the hostException attribute. If the host authorizes
redemption of the voucher, the EGM MUST NOT stack the voucher if it is unable to redeem the
voucher for any reason, and it MUST NOT redeem the voucher if it is unable to stack the voucher for
any reason. If the host does not authorize redemption (i.e. hostException is set to a non-zero value),
the EGM MUST stack the voucher if possible.

• G2S_reject tells the EGM to reject the voucher regardless of whether it was successfully redeemed or
not. If hostAction is set to G2S_reject, the EGM MUST NOT stack the voucher under any
circumstances.

The egmAction attribute indicates the final disposition of the voucher — that is, whether the voucher was
stacked or rejected. If the voucher was stacked by the EGM, the egmAction attribute MUST be set to
G2S_redeemed. Otherwise, if the voucher was rejected (not stacked) by the EGM, the egmAction attribute
MUST be set to G2S_rejected. The egmAction attribute MUST be set based on the actual action performed
by the EGM, not the action requested by the host in the hostAction attribute.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 38 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

When the EGM has transferred the credits to the credit meter or the voucher is rejected, the EGM MUST
generate a commitVoucher command for the host. In all cases, following the receipt of an authorizeVoucher
command, the EGM MUST generate a commitVoucher command to report the results of the transfer, even if
no funds were transferred.

When an authorizeVoucher command is generated, the host MUST record that a redemption is pending for
the voucher. Until a commitVoucher command is received or the status is manually reset, additional
redemptions MUST NOT be permitted for that voucher.

21.19.1.1 Duplicate Commands

The EGM MUST consider an authorizeVoucher command logically equivalent to a previous
authorizeVoucher command if the EGM detects from its voucher class log that the redemption of the
voucher associated with the transactionId has already been authorized or denied — that is, the state of the
voucher redemption request is no longer G2S_redeemSent. In such cases, the EGM MUST NOT generate any
additional G2S_VCE107 Voucher Authorized events.

21.19.2 Attribute and Element Detail

Table 21.23 authorizeVoucher Attributes (Sheet 1 of 2)

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

validationId type: t_validationId
use: required

Voucher identifier.

voucherAmt type: t_meterValue
use: required

Amount of voucher.

creditType type: t_creditTypes
use: required

Credit type: G2S_cashable, G2S_promo, or
G2S_nonCash.

voucherSource type: t_voucherSources
use: optional
default: G2S_egmIssued

Indicates whether the voucher was issued by the
system or an EGM.

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was originally
issued as the result of a large win.

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

Voucher sequence number provided by the host:
MAY be the same value reported when the
voucher was issued; MAY be another value. The
EGM does not validate this number, but only
records the value in its log.

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have a
date/time expiration assigned to them.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 39
© 2019 Gaming Standards Association (GSA)

expireDateTime type: t_g2sDateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration assigned to non-cashable credits
(only valid if expireCredits is set to true).

hostAction type: t_hostVoucherActions
use: optional
default: G2S_egmAction

Host designated stacker action: G2S_egmAction,
G2S_stack, or G2S_reject.

hostException type: t_hostVoucherExceptions
use: optional
default: 0

Host transfer exception code.

Table 21.23 authorizeVoucher Attributes (Sheet 2 of 2)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 40 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.20 commitVoucher Command

21.20.1 Command Description
This command is used by an EGM to report the results of a voucher redemption previously initiated with a
redeemVoucher command.

The commitVoucher command is generated regardless of whether or not the redemption was successful. If
unsuccessful, the transferAmt attribute MUST be set to 0 (zero). If successful, the transferAmt attribute
MUST be set to the actual amount transferred, which MUST be the total amount of the voucher. If the
voucher is rejected, the egmException attribute MUST indicate the reason for rejection. If the voucher is
rejected, the host should reset the status of the voucher so that it can be redeemed elsewhere.

The EGM MUST continue to retry the commitVoucher command until a valid commitVoucherAck command
is received.

The host must make a best-effort to acknowledge commitVoucher commands. Class-specific application-level
error codes MUST NOT be used. Until acknowledged, the EGM MUST continue to retry the commands at
the frequency set in the timeToLive attribute of the voucherProfile command. See Section 1.22.4, Command
Retry, for more details. Failure to acknowledge the commands may cause the log to fill up, the voucher device
to be disabled, and a loss of functionality. See Section 1.18.4, Committed Transactions, for more details.

21.20.1.1 Duplicate Commands

The host MUST consider a commitVoucher command logically equivalent to a previous commitVoucher
command if the host detects that the transactionId associated with the redemption or rejection of the
voucher was reported in a previous commitVoucher command for the same EGM since the last time that non-
volatile storage was cleared on the EGM. In such cases, the host MUST generate a logically equivalent
commitVoucherAck command in response to the commitVoucher command.

21.20.2 Attribute and Element Detail

Table 21.24 commitVoucher Attributes (Sheet 1 of 2)

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

validationId type: t_validationId
use: required

Voucher identifier.

voucherAmt type: t_meterValue
use: required

Voucher amount.

creditType type: t_creditTypes
use: required

Credit type: G2S_cashable, G2S_promo, or
G2S_nonCash.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 41
© 2019 Gaming Standards Association (GSA)

voucherSource type: t_voucherSources
use: optional
default: G2S_egmIssued

Indicates whether the voucher was issued by the
system or an EGM.

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was originally
issued as the result of a large win.

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

Voucher sequence number that was provided by
the host in the authorizeVoucher command.

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have a
date/time expiration assigned to them.

expireDateTime type: t_g2sDateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration assigned to non-cashable credits
(only valid if expireCredits is set to true).

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred.

transferDateTime type: t_g2sDateTime
use: required

Date and time that the voucher was redeemed
or rejected.

egmAction type: t_egmVoucherActions
use: required

Type of action taken: G2S_redeemed or
G2S_rejected.

egmException type: t_egmVoucherExceptions
use: optional
default: 0

Indicates voucher redeemed or reason for
voucher rejection.

Table 21.24 commitVoucher Attributes (Sheet 2 of 2)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 42 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.21 commitVoucherAck Command

21.21.1 Command Description
This command is used by a host to acknowledge the receipt of a commitVoucher command from an EGM.

21.21.1.1 Duplicate Commands

The EGM MUST consider a commitVoucherAck command logically equivalent to a previous
commitVoucherAck command if the EGM detects from its voucher class log that the redemption or rejection
of the voucher associated with the transactionId has already been acknowledged — that is, the state of the
voucher redemption request is no longer G2S_commitSent. In such cases, the EGM MUST NOT generate any
additional G2S_VCE111 Voucher Commit Command Acknowledged events.

21.21.2 Attribute and Element Detail

Table 21.25 commitVoucherAck Attributes

Attribute Restrictions Description

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 43
© 2019 Gaming Standards Association (GSA)

21.22 getVoucherLogStatus Command

21.22.1 Command Description
This command is used by the host to request the current status of the voucher transaction log from an EGM.
The response includes the sequence number of the last transaction and the total number of transactions in the
log. A voucherLogStatus command is generated in response to a getVoucherLogStatus command.

21.22.2 Attribute and Element Detail

The getVoucherLogStatus command contains no attributes or sub-elements.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 44 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.23 voucherLogStatus Command

21.23.1 Command Description
This command is used by the EGM to send the current status of the voucher transaction log to a host. The
voucherLogStatus command is generated in response to the getVoucherLogStatus command.

21.23.2 Attribute and Element Detail

Table 21.26 voucherLogStatus Attributes

Attribute Restrictions Description

lastSequence type: t_logSequence
use: optional
default: 0
minIncl: 0

The sequence number of the last transaction within the log.

totalEntries type: xs:int
use: optional
default: 0
minIncl: 0

The total number of transactions within the log.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 45
© 2019 Gaming Standards Association (GSA)

21.24 getVoucherLog Command

21.24.1 Command Description
This command is used by the host to request the voucher transaction log from an EGM. Additional
information regarding the use of the lastSequence and totalEntries attributes can be found in Chapter 1.
The voucherLogList command is generated in response to the getVoucherLog command.

21.24.2 Attribute and Element Detail

Table 21.27 getVoucherLog Attributes

Attribute Restrictions Description

lastSequence type: t_logSequence
use: optional
default: 0
minIncl: 0

The sequence number of the transaction that should be
the first entry in the list; if set to 0 (zero) then default to
the last transaction.

totalEntries type: xs:int
use: optional
default: 0
minIncl: 0

The total number of transactions that should be included
in the list; if set to 0 (zero) then default to all transactions.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 46 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.25 voucherLogList Command

21.25.1 Command Description
This command is used by the EGM to send the contents of the transaction log to a host. The voucherLogList
command is generated in response to a getVoucherLog command.

For security reasons, because guest hosts are able to interrogate the voucher transaction log, only the
rightmost 4 (four) digits of the validation ID are reported — the leftmost 14 (fourteen) digits MUST be
masked and replaced with non-numeric values. For example, the validation ID “123456789012345678” MUST
be masked and a value such as “xxxxxxxxxxxxxx5678” MUST be reported. The entire validationId should
be logged for usage during command retry.

21.25.2 Attribute and Element Detail

Table 21.28 voucherLogList Elements

Element Restrictions Description

voucherLog minOcc: 0
maxOcc:

Contains information about a specific voucher transaction.

Table 21.29 voucherLog Attributes (Sheet 1 of 3)

Attribute Restrictions Description

Record Identification Attributes

logSequence type: t_logSequence
use: required

Unique log sequence number assigned by the
EGM; a series that strictly increases by 1 (one)
starting at 1 (one).

deviceId type: t_deviceId
use: required

Device identifier of the device that generated the
transaction. Wildcards not permitted.

transactionId type: t_transactionId
use: required
minIncl: 1

Voucher transaction identifier.

Voucher Transaction Status

voucherState type: t_voucherStates
use: required

Current state of the voucher transaction.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 47
© 2019 Gaming Standards Association (GSA)

voucherAction type: t_voucherActions
use: required

Type of log entry: G2S_issue or G2S_redeem.

Player Identification Attributes

idReaderType type: t_idReaderTypes
use: optional
default: G2S_none

The idReaderType of the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to G2S_none.

idNumber type: t_idNumber
use: optional
default: <empty>

The idNumber present in the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to <empty>.

playerId type: t_playerId
use: optional
default: <empty>

The playerId present in the idReader device
associated with the voucher device. If no
idReader device is associated or the device is
disabled then set to <empty>.

Voucher Attributes

validationId type: t_validationId
use: required

Voucher identifier (only last four digits are
reported to the host).

voucherAmt type: t_meterValue
use: required

Voucher amount.

creditType type: t_creditTypes
use: required

Credit type (G2S_cashable, G2S_promo, or
G2S_nonCash).

voucherSource type: t_voucherSources
use: optional
default: G2S_egmIssued

Indicates whether the voucher was issued by the
system or an EGM.

largeWin type: xs:boolean
use: optional
default: false

Indicates whether the voucher was issued as the
result of a large win.

voucherSequence type: xs:int
use: optional
default: 0
minIncl: 0

When the voucherAction is G2S_issue, the
internal EGM voucher issuance sequence
number printed on the voucher. When the
voucherAction is G2S_redeem, the voucher
sequence number that was provided by the host
in the authorizeVoucher command.

expireCredits type: xs:boolean
use: optional
default: false

Indicates whether non-cashable credits have a
date/time expiration assigned to them.

expireDateTime type: t_g2sDateTime
use: optional
default: 2000-01-
01T00:00:00.000-00:00

Expiration assigned to non-cashable credits
(only valid if expireCredits is set to true).

Table 21.29 voucherLog Attributes (Sheet 2 of 3)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 48 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

hostAction type: t_hostVoucherActions
use: optional
default: G2S_egmAction

May be used by host to force a voucher to be
stacked or rejected regardless of amount paid to
the player.

hostException type: t_hostVoucherExceptions
use: optional
default: 0

Host transfer exception code.

Transfer Attributes

transferAmt type: t_meterValue
use: optional
default: 0

Actual amount transferred to the EGM.

transferDateTime type: t_g2sDateTime
use: required

Date and time that the voucher was issued,
redeemed, or rejected.

expireDays type: xs:int
use: optional
default: -1
minIncl: -1

Expiration of voucher in number of days (only
valid if expireCredits is set to false). -1
indicates no expiration is provided.

egmAction type: t_egmVoucherActions
use: required

Type of action taken.

egmException type: t_egmVoucherExceptions
use: optional
default: 0

EGM transfer exception code.

Table 21.30 voucherLog Elements

Element Restrictions Description

voucherSourceRef minOcc: 0
maxOcc:

Contains information about an associated issueVoucher
transaction. See attributes in Table 21.31.

Table 21.31 voucherSourceRef Attributes (Sheet 1 of 2)

Attribute Restrictions Description

deviceClass type: t_deviceClass
use: required

Device class of the associated transaction. Wildcards
not permitted.

deviceId type: t_deviceId
use: required

Device identifier of the associated transaction.
Wildcards not permitted.

transactionId type: t_transactionId
use: required
minIncl: 1

Transaction identifier of the associated transaction.

logSequence type: t_logSequence
use: required

Log sequence of the associated transaction.

Table 21.29 voucherLog Attributes (Sheet 3 of 3)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 49
© 2019 Gaming Standards Association (GSA)

cashableAmt type: t_meterValue
use: optional
default: 0

Cashable amount of the associated transaction.

promoAmt type: t_meterValue
use: optional
default: 0

Promotional amount of the associated transaction.

nonCashAmt type: t_meterValue
use: optional
default: 0

Non-cashable amount of the associated transaction.

Table 21.31 voucherSourceRef Attributes (Sheet 2 of 2)

Attribute Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 50 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.26 Data Types
The following table lists the data types specific to the voucher class:

Table 21.32 voucher Class Data Types (Sheet 1 of 2)

Data Type Restrictions Description

t_voucherActions type: xs:string
enumerations:

G2S_issue
G2S_redeem

Type of log entry. See Section 21.26.1 for
description of enumerations.

t_hostVoucherActions type: xs:string
enumerations:

G2S_egmAction
G2S_stack
G2S_reject

Host designated stacker action. See Section
21.26.2 for description of enumerations.

t_egmVoucherActions type: xs:string
enumerations:

G2S_issued
G2S_pending
G2S_redeemed
G2S_rejected

Type of action taken by the EGM. See Section
21.26.3 for description of enumerations.

t_hostVoucherExceptions type: t_exceptionCode
enumerations:

See Section 21.26.4.

Host transfer exception code.

t_egmVoucherExceptions type: t_exceptionCode
enumerations:

See Section 21.26.5.

EGM transfer exception code.

t_validationListId type: xs:long
minIncl: 0

Host-assigned validation list identifier.

t_voucherSources type: xs:string
enumerations:

G2S_egmIssued
G2S_systemIssued

Source of voucher. See Section 21.26.6 for
description of enumerations.

t_voucherStates type: xs:string
enumerations:

G2S_issueSent
G2S_issueAcked
G2S_redeemSent
G2S_redeemAuth
G2S_commitSent
G2S_commitAcked

States of the voucher transaction. See Section
21.26.7 for description of enumerations.

t_validationSeed type: xs:string
maxLen: 20
pattern: [-~]{0,20}

Validation seed data type.

t_voucherTitle16 type: xs:string
maxLen: 16

16-character data type for voucher titles.

t_voucherTitle40 type: xs:string
maxLen: 40

40-character data type for voucher titles.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 51
© 2019 Gaming Standards Association (GSA)

21.26.1 t_voucherActions Enumerations: Voucher Action Codes
The following table contains the enumerations for the t_voucherActions data type:

21.26.2 t_hostVoucherActions Enumerations: Host Action Codes
The following table contains the enumerations for the t_hostVoucherActions data type:

21.26.3 t_egmVoucherActions Enumerations: EGM Action Codes
The following table contains the enumerations for the t_egmVoucherActions data type:

t_validationId type: xs:string
minLen: 18
maxLen: 18

Voucher identifier.

Table 21.33 Enumerations for t_voucherActions Data Type

Action Description

G2S_issue Voucher issuance log.

G2S_redeem Voucher redemption log.

Table 21.34 Enumerations for t_hostVoucherActions Data Type

Action Description

G2S_egmAction Stack or reject to be determined by the EGM.

G2S_stack Force voucher to be stacked.

G2S_reject Force voucher to be rejected.

Table 21.35 Enumerations for t_egmVoucherActions Data Type

Action Description

G2S_issued Voucher issued.

G2S_pending Redemption requested.

G2S_redeemed Voucher stacked.

G2S_rejected Voucher returned to player (not stacked).

Table 21.32 voucher Class Data Types (Sheet 2 of 2)

Data Type Restrictions Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 52 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.26.4 t_hostVoucherExceptions Enumerations: Host Transfer Exception Codes
The following table contains the enumerations for the t_hostVoucherExceptions data type:

21.26.5 t_egmVoucherExceptions Enumerations: EGM Transfer Exception Codes
The following table contains the enumerations for the t_egmVoucherExceptions data type:

Table 21.36 Exception Codes for t_hostVoucherExceptions Data Type

Exception Code Description

0 Redemption authorized.

1 Redemption in process at another location.

2 Voucher already redeemed.

3 Voucher expired.

4 Voucher not found.

5 Voucher cannot be redeemed at this location.

6 Incorrect player for voucher.

99 Redemption denied – no reason given.

Table 21.37 Exception Codes for t_egmVoucherExceptions Data Type

Exception Code Description

0 Transfer successful.

1 Printer presentation error – partial voucher issued.

2 Redemption error from host – voucher rejected.

3 Redemption exception from host – voucher rejected.

4 Redemption exception from host – voucher stacked.

5 Redemption timed out by EGM – voucher rejected.

6 Voucher exceeds credit limit – voucher rejected.

7 Game state changed – voucher rejected.

8 Another transfer in process – voucher rejected.

9 Cannot mix non-cashable expiration – voucher rejected.

10 Cannot mix non-cashable credits – voucher rejected.

99 Voucher rejected – reason unknown

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 53
© 2019 Gaming Standards Association (GSA)

21.26.6 t_voucherSources Enumerations: Voucher Source Codes
The following table contains the enumerations for the t_voucherSources data type:

21.26.7 t_voucherStates Enumerations: Voucher Transaction Status Codes
The following table contains the enumerations for the t_voucherStates data type:

Table 21.38 Enumerations for t_voucherSources Data Type

Action Description

G2S_egmIssued Voucher issued by EGM or kiosk.

G2S_systemIssued Voucher issued by system.

Table 21.39 Enumerations for t_voucherStates Data Type

Status Description

G2S_issueSent Voucher issued, waiting for acknowledgement.

G2S_issueAcked Voucher issued and acknowledged.

G2S_redeemSent Redemption requested; waiting for authorization.

G2S_redeemAuth Redemption authorized; transfer in process.

G2S_commitSent Transfer action complete/aborted; waiting for acknowledgement.

G2S_commitAcked Transfer action complete/aborted and acknowledged.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 54 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.27 Error Codes
The following table lists the error codes specific to the voucher class:

Table 21.40 voucher class Error Codes

Error Code Suggested Error Text

G2S_VCX001 Invalid Voucher ID

G2S_VCX002 Invalid Transaction ID

G2S_VCX003 Duplicate Transaction ID

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 55
© 2019 Gaming Standards Association (GSA)

21.28 Event Codes
The following table provides general information for events that may be generated by devices within the
voucher class. The definitive information regarding the details of each event, including affected data, is
contained in the individual event descriptions that follow this table.

NOTE:
The requirements in the individual event descriptions assume that devices are owned by a G2S host.
Requirements may be different for EGM-owned devices. See Section 1.20.1, EGM-Owned Devices,
as well as the appropriate guidelines for implementing EGM-owned devices, for more details.

Table 21.41 voucher Class Event Codes (Sheet 1 of 2)
(CB = cabinet, VC = voucher, BN = bonus, GP = gamePlay, JP = handpay, WT = wat,
HP = hopper, ND = noteDispenser, PG = progressive, DF = dft)

Event Code and Text

Affected Device Logs, Meters, Status*

CB VC BN GP JP WT HP ND PG DF

G2S_VCE001 Device Disabled by EGM I S

G2S_VCE002 Device Not Disabled by EGM I S

G2S_VCE003 Device Disabled by Host I S

G2S_VCE004 Device Not Disabled by Host I S

G2S_VCE005 Device Configuration Changed by
Host

S

G2S_VCE006 Device Configuration Changed by
Operator

S

G2S_VCE009 Device Locked by Host I S

G2S_VCE010 Device Not Locked by Host I S

G2S_VCE101 Validation ID Data Expired S

G2S_VCE102 Validation ID Data Updated S

G2S_VCE103 Voucher Issued M LM

S†
MF MF MF MF M M M MF‡

G2S_VCE105 Voucher Issue Command
Acknowledged

L

G2S_VCE106 Voucher Redemption Requested L

G2S_VCE107 Voucher Authorized L

G2S_VCE108 Voucher Redeemed M LM

G2S_VCE109 Voucher Rejected L

G2S_VCE111 Voucher Commit Command
Acknowledged

L

Extension in v3.0: g2sVSO

G2S_VCE112 Validation System Offline S

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 56 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.1 Affected Data
The following table lists the device status elements and transaction log elements that are considered affected
data for events within the class. The table also identifies the classes that contain meters which are considered
affected data for events within this class.

See Section 1.20, Event Subscriptions, for complete details on which data must be reported with events.

See Section 3.4.7, evaluate(state) for an explanation of the conventions "evaluate(deviceStatus.egmEnabled)"
and "evaluate(cabinetStatus.egmState)" as used in the following Device State Change descriptions.

21.28.2 G2S_VCE001 Device Disabled by EGM
The EGM MUST generate this event when the egmEnabled attribute of the voucherStatus command for the
device is changed from true to false. The EGM MUST generate this event regardless of whether the device
was actually disabled as a result of the change to the egmEnabled attribute (the device may have been
previously disabled due to some other factor).

G2S_VCE113 Validation System Not Offline S

* S = The event may cause the status of the device to be directly affected.
I = The event may cause the status of the device to be indirectly affected (the status record is not
considered affected data for this event).
L = The event may cause a transaction record for the device to be directly affected.
M = Meters within the indicated class may be updated as a result of the event and may be included as
affected data with the event.
F = The event may be caused by (or associated with) a transaction in another class and, thus, that
transaction may become a source reference for the transaction within this class (that transaction record
is not considered affected data for this event).

† Extension in v2.1: g2s2
‡ Extension in v2.1: g2sDF

Table 21.42 Elements Included With Events

Affected Data Element/Class

Device Status voucherStatus

Transaction Log voucherLog

Meters cabinet, gamePlay, handpay, hopper, noteDispenser, progressive,
bonus, voucher, wat

Extension in v2.1: g2sDF

dft

Table 21.41 voucher Class Event Codes (Sheet 2 of 2)
(CB = cabinet, VC = voucher, BN = bonus, GP = gamePlay, JP = handpay, WT = wat,
HP = hopper, ND = noteDispenser, PG = progressive, DF = dft)

Event Code and Text

Affected Device Logs, Meters, Status*

CB VC BN GP JP WT HP ND PG DF

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 57
© 2019 Gaming Standards Association (GSA)

21.28.3 G2S_VCE002 Device Not Disabled by EGM
The EGM MUST generate this event when the egmEnabled attribute of the voucherStatus command for the
device is changed from false to true. The EGM MUST generate this event regardless of whether the device
was actually enabled as a result of the change to the egmEnabled attribute (other factors may keep the device in
a disabled state).

21.28.4 G2S_VCE003 Device Disabled by Host
The EGM MUST generate this event when the hostEnabled attribute of the voucherStatus command for
the device is changed from true to false. The EGM MUST generate this event regardless of whether the
device was actually disabled as a result of the change to the hostEnabled attribute (the device may have been
previously disabled due to some other factor). The EGM MUST generate this event regardless of whether the
change to the hostEnabled attribute occurred because of a setVoucherState command from the owner host
with the enable attribute set to false, a restart, or other means.

When the hostEnabled attribute of the voucherStatus command is set to false for a voucher device—for
example, if set to false by the owner — the valIdListLife timer in the voucherProfile command MUST
be expired. This is intended to allow an orderly restart of the voucher device by the owner.

Table 21.43 G2S_VCE001 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.egmEnabled = "false".

evaluate(cabinetStatus.egmState).

Meter State Changes None.

Log State Changes None.

Related Info None.

Table 21.44 G2S_VCE002 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.egmEnabled = "true".
evaluate(cabinetStatus.egmState).

Meter State Changes None.

Log State Changes None.

Related Info None.

Table 21.45 G2S_VCE003 Device, Meter, Log Changes, and Related Info (Sheet 1 of 2)

Details

Device State Changes voucherStatus.hostEnabled = "false".
evaluate(cabinetStatus.egmState).
Expire voucherProfile.valIdListLife timer.

Meter State Changes None.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 58 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.5 G2S_VCE004 Device Not Disabled by Host
The EGM MUST generate this event when the hostEnabled attribute of the voucherStatus command for
the device is changed from false to true. The EGM MUST generate this event regardless of whether the
device was actually enabled as a result of the change to the hostEnabled attribute (other factors may keep the
device in a disabled state). The EGM MUST generate this event regardless of whether the change to the
hostEnabled attribute occurred because of a setVoucherState command from the owner host with the
enable attribute set to true, a restart, or other means.

21.28.6 G2S_VCE005 Device Configuration Changed by Host
This event MUST be generated by the EGM after the configuration for the device has been changed by the
configurator of the device via commands within the optionConfig class. The event MUST be generated after
the optionChangeStatus command, which reports that the changes have been applied, is generated by the
optionConfig device.

21.28.7 G2S_VCE006 Device Configuration Changed by Operator
This event MUST be generated by the EGM after the configuration for the device has been changed by an
entity other than the configurator of the device — for example, when an operator makes changes locally at the
EGM via an operator menu or other similar mechanism. The event MUST NOT be generated until the
changes have been applied — for example, after the operator commits the changes or exits the operator menu.

Log State Changes None.

Related Info setVoucherState.

Table 21.46 G2S_VCE004 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.hostEnabled = "true".
evaluate(cabinetStatus.egmState).

Meter State Changes None.

Log State Changes None.

Related Info setVoucherState.

Table 21.47 G2S_VCE005 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.configurationId set by host.

Meter State Changes None.

Log State Changes None.

Related Info optionChangeStatus.

Table 21.45 G2S_VCE003 Device, Meter, Log Changes, and Related Info (Sheet 2 of 2)

Details

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 59
© 2019 Gaming Standards Association (GSA)

This event MUST also be generated by the EGM after the configuration for the device has been changed due
to a reset, restart, or similar action.

21.28.8 G2S_VCE009 Device Locked by Host
This event MUST be generated by the EGM after the hostLocked attribute of the voucherStatus command
for the voucher device has been changed from false to true. The EGM MUST generate this event regardless
of whether the change occurred because of a setVoucherLockOut command issued by a host with the lockOut
attribute set to true, a restart, or other means. See Section 3.4, Disable, Lockout, and Cabinet State for more
details.

21.28.9 G2S_VCE010 Device Not Locked by Host
This event MUST be generated by the EGM after the hostLocked attribute of the voucherStatus command
for the voucher device has been changed from true to false. The EGM MUST generate this event regardless
of whether the change occurred because of a setVoucherLockOut command issued by a host with the lockOut
attribute set to false, a restart, or other means. See Section 3.4, Disable, Lockout, and Cabinet State for more
details.

Table 21.48 G2S_VCE006 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.configurationId = "0".

Meter State Changes None.

Log State Changes None.

Related Info None.

Table 21.49 G2S_VCE009 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.hostLocked = "true".
evaluate(cabinetStatus.egmState).

Meter State Changes None.

Log State Changes None.

Related Info setVoucherLockOut.

Table 21.50 G2S_VCE010 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.hostLocked = "false".
evaluate(cabinetStatus.egmState).

Meter State Changes None.

Log State Changes None.

Related Info setVoucherLockOut.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 60 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.10 G2S_VCE101 Validation ID Data Expired

21.28.10.1 Event Description

This event MUST be generated by the EGM when the valIdListLife timer expires. See Section 21.14,
getValidationData Command, for more details about refreshing the list of validation identifiers when the
current set of validation identifiers has expired.

When the allowVoucherIssue attribute of the voucherProfile command is set to false for a voucher device
the EGM MUST NOT generate the G2S_VCE101 Validation ID Data Expired event for the voucher device.

21.28.10.2 Device, Meter, and Log Changes, and Related Info

21.28.11 G2S_VCE102 Validation ID Data Updated
This event MUST be generated by the EGM after the validation ID data has been updated by a
validationData command.

21.28.12 G2S_VCE103 Voucher Issued
This event MUST be generated by the EGM after a voucher has been issued and all associated meters have
been updated.

21.28.10.1.1 allowVoucherIssue and allowVoucherRedeem Attributes

Extension in v2.0.0: g2s1

Table 21.51 G2S_VCE101 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.egmEnabled = "false".

Meter State Changes None.

Log State Changes None.

Related Info getValidationData.

If the value of the voucherStatus.egmEnabled attribute is changed to false,
event G2S_VCE001 Device Disabled by EGM MUST be generated.

Table 21.52 G2S_VCE102 Device, Meter, Log Changes, and Related Info

Details

Device State Changes evaluate(voucherStatus.egmEnabled).

Meter State Changes None.

Log State Changes None.

Related Info validationData.

If the value of the voucherStatus.egmEnabled attribute is changed to true,
event G2S_VCE002 Device Not Disabled by EGM MUST be generated.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 61
© 2019 Gaming Standards Association (GSA)

NOTES:

1. Transactions within the bonus, gamePlay, handpay, and wat classes may be source reference entries for
a transaction within the voucher class. These source references are recorded with the Voucher Issued
event.

Table 21.53 G2S_VCE103 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes • Meter updates associated with cash-outs to vouchers are documented
with this event.

• Meter updates associated with game results, which may include the
issuance of vouchers, are documented with event G2S_GPE112 Game
Ended in the gamePlay class.

• Meter updates associated with cancelled credits, which may include the
issuance of vouchers, are documented with event G2S_JPE104 Handpay
Keyed Off in the handpay class.

• Meter updates associated with bonus awards, which may include the
issuance of vouchers, are documented with event G2S_BNE104 Bonus
Award Paid in the bonus class.

• Meter updates associated with WAT transfers to vouchers are
documented with event G2S_WTE107 WAT Transfer Completed in the
wat class.

• Regardless of the event with which the meter updates are documented,
when the issuance of vouchers takes place, the meter updates MUST be
treated as affected data for this event.

• See Section 5.14, Meter Consistency in Complex Transactions for more
details.

See Table 21.54.

Extension in v2.1: g2sDF

• Meter updates associated with DFT transfers, which may include the
issuance of vouchers, are documented with event G2S_DFE105
Transfer Successfully Completed in the dft class.

Log State Changes Create voucherLog. See Table 21.55.

Create voucherSourceRef for source transactions, as appropriate. See
Table 21.56, Table 21.57, Table 21.58, and Table 21.59.

Extension in v2.1: g2sDF

Create voucherSourceRef for dft transactions, as appropriate. See Table 21.60.

Related Info issueVoucher.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 62 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

2. When combining cashable and promotional credits on one voucher, the promotional credits are
converted to cashable. While total in and total out will still balance, the individual credit types will not
balance.

The following table lists the meter updates that MUST occur following the printing of a payment voucher for a
player cash-out.

Table 21.54 G2S_VCE103 Meter State Changes

Bal Device Meter Description

Y cabinet G2S_playerCashableAmt Decrements by the voucher amount paid from the
cashable credit meter.

Y cabinet G2S_playerPromoAmt Decrements by the voucher amount paid from the
promotional credit meter.

Y cabinet G2S_playerNonCashAmt Decrements by the voucher amount paid from the non-
cashable credit meter.

Y voucher G2S_cashableOutAmt Increments by the voucher amount paid as cashable
credits.

voucher G2S_cashableOutCnt Increments by 1 (one) if cashable voucher issued.

Y voucher G2S_promoOutAmt Increments by the voucher amount paid as promotional
credits.

voucher G2S_promoOutCnt Increments by 1 (one) if promotional voucher issued.

Y voucher G2S_nonCashOutAmt Increments by the voucher amount paid as non-cashable
credits.

voucher G2S_nonCashOutCnt Increments by 1 (one) if non-cashable voucher issued.

Table 21.55 G2S_VCE103 Transaction Changes – Create voucherLog (Sheet 1 of 2)

Attribute Set to Value …

logSequence Next value in the series.

deviceId voucher.deviceId.

transactionId Next value in the series.

voucherState Set to G2S_issueSent.

voucherAction Set to G2S_issue.

idReaderType idReaderProfile.idReaderType of the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to G2S_none.

idNumber idReaderStatus.idNumber present in the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to <empty>.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 63
© 2019 Gaming Standards Association (GSA)

playerId idReaderStatus.playerId present in the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to <empty>.

validationId The validation identifier of the voucher.

voucherAmt Amount that the voucher was issued for.

creditType Type of credits for which the voucher was issued.

voucherSource Set to G2S_egmIssued.

largeWin Set to true if voucher printed due to key-off of large win to voucher; otherwise, set
to false.

voucherSequence Sequence number printed on voucher.

expireCredits Set to true if date/time expiration assigned to voucher.

expireDateTime Date/time of voucher expiration (if expireCredits is set to true).

expireDays Number of days before expiration of the voucher (if expireCredits is set to
false).

hostAction Set to G2S_egmAction.

hostException Set to 0 (zero).

transferAmt Amount that the voucher was issued for.

transferDateTime Date/time voucher was issued.

egmAction Set to G2S_issued.

egmException Set to 0 (zero) or 1 (one) as appropriate.

Table 21.56 G2S_VCE103 voucherSourceRef: bonus Source References (Sheet 1 of 2)

Attribute Source Target

deviceClass G2S_bonus

deviceId bonusLog.deviceId

transactionID bonusLog.transactionId

logSequence bonusLog.logSequence

cashableAmt If the bonusLog.creditType attribute is
set to G2S_cashable, set to the cashable
amount of the source transaction,
typically bonusLog.bonusAwardAmt;
otherwise set to 0 (zero). See Section 1.18
for more details.

If cashableAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the cashableAmt value, and set the
voucherLog.creditType attribute to
G2S_cashable.

Table 21.55 G2S_VCE103 Transaction Changes – Create voucherLog (Sheet 2 of 2)

Attribute Set to Value …

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 64 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

NOTE:
When a bonus is awarded across multiple game cycles, the source reference element MUST only reflect the
amount awarded in the current game cycle.

promoAmt If the bonusLog.creditType attribute is
set to G2S_promo, set to the promotional
amount of the source transaction,
typically bonusLog.bonusAwardAmt;
otherwise set to 0 (zero). See Section 1.18
for more details.

If promoAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to the
promoAmt value, and set the
voucherLog.creditType attribute to
G2S_promo.

nonCashAmt If bonusLog.creditType is set to
G2S_nonCash, set to the non-cashable
amount of the source transaction,
typically bonusLog.bonusAwardAmt;
otherwise set to 0 (zero). See Section 1.18
for more details.

If nonCashAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the nonCashAmt value, and set the
voucherLog.creditType attribute to
G2S_nonCash.

Table 21.57 G2S_VCE103 voucherSourceRef: gamePlay Source References

Attribute Source Target

deviceClass G2S_gamePlay

deviceId recallLog.deviceId

transactionID recallLog.transactionId

logSequence recallLog.logSequence

cashableAmt recallLog.finalWin Set the voucherLog.voucherAmt attribute
to the cashableAmt value, and set the
voucherLog.creditType attribute to
G2S_cashable.

promoAmt 0 (zero).

nonCashAmt 0 (zero).

Table 21.58 G2S_VCE103 voucherSourceRef: handpay Source References* (Sheet 1 of 2)

Attribute Source Target

deviceClass G2S_handpay

deviceId handpayLog.deviceId

transactionID handpayLog.transactionId

logSequence handpayLog.logSequence

Table 21.56 G2S_VCE103 voucherSourceRef: bonus Source References (Sheet 2 of 2)

Attribute Source Target

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 65
© 2019 Gaming Standards Association (GSA)

cashableAmt Set to the cashable amount of source
transaction, typically
handpayLog.requestCashableAmt,
unless the requested amount was reduced
by the host. See Section 1.18 for more
details.

If cashableAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the cashableAmt value, and set the
voucherLog.creditType attribute to
G2S_cashable.

promoAmt Set to the promotional amount of source
transaction, typically
handpayLog.requestPromoAmt, unless
the requested amount was reduced by the
host. See Section 1.18 for more details.

If promoAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to the
promoAmt value, and set the
voucherLog.creditType attribute to
G2S_promo.

nonCashAmt Set to the non-cashable amount of source
transaction, typically
handpayLog.requestNonCashAmt, unless
the requested amount was reduced by the
host. See Section 1.18 for more details.

If nonCashAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the nonCashAmt value, and set the
voucherLog.creditType attribute to
G2S_nonCash.

* Note: A single handpay transaction may trigger multiple voucher transactions — one for each
creditType requiring payment. Only the amount related to the applicable creditType MUST be
recorded in the source reference.

Table 21.59 G2S_VCE103 voucherSourceRef: wat Source References*

Attribute Source Target

deviceClass G2S_wat

deviceId watLog.deviceId

transactionID watLog.transactionId

logSequence watLog.logSequence

cashableAmt Set to the cashable amount of source
transaction, typically
watLog.authCashableAmt. See Section
1.18 for more details.

If cashableAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the cashableAmt value, and set the
voucherLog.creditType attribute to
G2S_cashable.

promoAmt Set to the promotional amount of source
transaction, typically
watLog.authPromoAmt. See Section 1.18
for more details.

If promoAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to the
promoAmt value, and set the
voucherLog.creditType attribute to
G2S_promo.

nonCashAmt Set to the non-cashable amount of source
transaction, typically
watLog.authNonCashAmt. See Section
1.18 for more details.

If nonCashAmt is greater than 0 (zero), set
the voucherLog.voucherAmt attribute to
the nonCashAmt value, and set the
voucherLog.creditType attribute to
G2S_nonCash.

Table 21.58 G2S_VCE103 voucherSourceRef: handpay Source References* (Sheet 2 of 2)

Attribute Source Target

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 66 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.13 G2S_VCE105 Voucher Issue Command Acknowledged
This event MUST be generated by the EGM after an issueVoucherAck response has been received from the
host. See Section 21.17, issueVoucherAck Command, for more details.

* Note: A single WAT transaction may trigger multiple voucher transactions — one for each creditType
requiring payment. Only the amount related to the applicable creditType MUST be recorded in the
source reference.

21.28.12.1 G2S_VCE103 voucherSourceRef: dft Source References

Extension in v2.1: g2sDF

Table 21.60 G2S_VCE103 voucherSourceRef: dft Source References

Attribute Source Target

deviceClass G2S_dft

deviceId dftLog.devcieId

transactionId dftLog.transactionId

logSequence dftLog.logSequence

cashableAmt dftLog.authCashableAmt If cashableAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to
cashableAmt and set voucherLog.creditType to
G2S_cashable.

promoAmt dftLog.authPromoAmt If promoAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to promoAmt
and set voucherLog.creditType to G2S_promo.

nonCashAmt dftLog.authNonCashAmt If cashableAmt is greater than 0 (zero), set the
voucherLog.voucherAmt attribute to nonCashAmt
and set voucherLog.creditType to G2S_nonCash.

Table 21.61 G2S_VCE105 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes None.

Log State Changes Update voucherLog. See Table 21.62.

Related Info issueVoucherAck.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 67
© 2019 Gaming Standards Association (GSA)

21.28.14 G2S_VCE106 Voucher Redemption Requested
This event MUST be generated by the EGM after a voucher has been escrowed.

Table 21.62 G2S_VCE105 Transaction Changes – voucherLog

Attribute Set to Value …

logSequence Unchanged.

deviceId Unchanged.

transactionId Unchanged.

voucherState Set to G2S_issueAcked.

voucherAction Unchanged.

idReaderType Unchanged.

idNumber Unchanged.

playerId Unchanged.

validationId Unchanged.

voucherAmt Unchanged.

creditType Unchanged.

voucherSource Unchanged.

largeWin Unchanged.

voucherSequence Unchanged.

expireCredits Unchanged.

expireDateTime Unchanged.

expireDays Unchanged.

hostAction Unchanged.

hostException Unchanged.

transferAmt Unchanged.

transferDateTime Unchanged.

egmAction Unchanged.

egmException Unchanged.

Table 21.63 G2S_VCE106 Device, Meter, Log Changes, and Related Info (Sheet 1 of 2)

Details

Device State Changes None.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 68 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

Meter State Changes None.

Log State Changes Create voucherLog. See Table 21.64.

Related Info redeemVoucher.

Table 21.64 G2S_VCE106 Transaction Changes – voucherLog (Sheet 1 of 2)

Attribute Set to Value …

logSequence Next value in the series.

deviceId voucher.deviceId.

transactionId Next value in the series.

voucherState Set to G2S_redeemSent.

voucherAction Set to G2S_redeem.

idReaderType idReaderProfile.idReaderType of the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to G2S_none.

idNumber idReaderStatus.idNumber present in the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to <empty>.

playerId idReaderStatus.playerId present in the idReader device associated with the
voucher device. If no idReader device is associated or the device is disabled then
set to <empty>.

validationId Validation identifier of the voucher.

voucherAmt Set to 0 (zero).

creditType Set to G2S_cashable.

voucherSource Set to G2S_egmIssued.

largeWin Set to false.

voucherSequence Set to 0 (zero).

expireCredits Set to false.

expireDateTime Set to 2000-01-01T00:00:00.000-00:00.

expireDays Set to 0 (zero).

hostAction Set to G2S_egmAction.

hostException Set to 0 (zero).

transferAmt Set to 0 (zero).

Table 21.63 G2S_VCE106 Device, Meter, Log Changes, and Related Info (Sheet 2 of 2)

Details

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 69
© 2019 Gaming Standards Association (GSA)

21.28.15 G2S_VCE107 Voucher Authorized
This event MUST be generated by the EGM after an authorizeVoucher response has been received from the
host. See Section 21.19, authorizeVoucher Command, for more details.

transferDateTime Current date/time.

egmAction Set to G2S_pending.

egmException Set to 0 (zero).

Table 21.65 G2S_VCE107 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes None.

Log State Changes Update voucherLog. See Table 21.66.

Related Info authorizeVoucher.

Table 21.66 G2S_VCE107 Transaction Changes – voucherLog (Sheet 1 of 2)

Attribute Set to Value …

logSequence Unchanged.

deviceId Unchanged.

transactionId Unchanged.

voucherState Set to G2S_redeemAuth.

voucherAction Unchanged.

idReaderType Unchanged.

idNumber Unchanged.

playerId Unchanged.

validationId Unchanged.

voucherAmt authorizeVoucher.voucherAmt.

creditType authorizeVoucher.creditType.

voucherSource authorizeVoucher.voucherSource.

largeWin authorizeVoucher.largeWin.

voucherSequence authorizeVoucher.voucherSequence.

Table 21.64 G2S_VCE106 Transaction Changes – voucherLog (Sheet 2 of 2)

Attribute Set to Value …

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 70 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.16 G2S_VCE108 Voucher Redeemed
This event MUST be generated by the EGM after a voucher redemption request has been authorized, the
voucher has been redeemed, all associated meters have been updated, and the voucher has been stacked or
rejected, as appropriate.

The following table lists the meter updates that MUST occur following the redemption of an EGM-issued
voucher.

expireCredits authorizeVoucher.expireCredits.

expireDateTime authorizeVoucher.expireDateTime.

expireDays Unchanged.

hostAction authorizeVoucher.hostAction.

hostException authorizeVoucher.hostException.

transferAmt Unchanged.

transferDateTime Current date/time.

egmAction Unchanged.

egmException Unchanged.

Table 21.67 G2S_VCE108 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes See Table 21.68 and Table 21.69.

Log State Changes Update voucherLog. See Table 21.70.

Related Info commitVoucher.

Table 21.68 G2S_VCE108 Meter Updates – EGM-Issued Voucher Redeemed (Sheet 1 of 2)

Bal Device Meter Description

Y cabinet G2S_playerCashableAmt Increments by the voucher amount if paid to the cashable
credit meter.

Y cabinet G2S_playerPromoAmt Increments by the voucher amount if paid to the promotional
credit meter.

Y cabinet G2S_playerNonCashAmt Increments by the voucher amount if paid to the non-cashable
credit meter.

Table 21.66 G2S_VCE107 Transaction Changes – voucherLog (Sheet 2 of 2)

Attribute Set to Value …

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 71
© 2019 Gaming Standards Association (GSA)

The following table lists the meter updates that MUST occur following the redemption of a system-issued
voucher.

Y voucher G2S_cashableInAmt Increments by the voucher amount if paid to the cashable
credit meter.

voucher G2S_cashableInCnt Increments by 1 (one) if cashable voucher redeemed.

Y voucher G2S_promoInAmt Increments by the voucher amount if paid to the promotional
credit meter.

voucher G2S_promoInCnt Increments by 1 (one) if promotional voucher redeemed.

Y voucher G2S_nonCashInAmt Increments by the voucher amount if paid to the non-cashable
credit meter.

voucher G2S_nonCashInCnt Increments by 1 (one) if non-cashable voucher redeemed.

Table 21.69 G2S_VCE108 Meter Updates – System-Issued Voucher Redeemed

Ba
l Device Meter Description

Y cabinet G2S_playerCashableAmt Increments by the voucher amount if paid to the cashable
credit meter.

Y cabinet G2S_playerPromoAmt Increments by the voucher amount if paid to the promotional
credit meter.

Y cabinet G2S_playerNonCashAmt Increments by the voucher amount if paid to the non-cashable
credit meter.

Y voucher G2S_cashableSysInAmt Increments by the voucher amount if paid to the cashable
credit meter.

voucher G2S_cashableSysInCnt Increments by 1 (one) if cashable voucher redeemed.

Y voucher G2S_promoSysInAmt Increments by the voucher amount if paid to the promotional
credit meter.

voucher G2S_promoSysInCnt Increments by 1 (one) if promotional voucher redeemed.

Y voucher G2S_nonCashSysInAmt Increments by the voucher amount if paid to the non-cashable
credit meter.

voucher G2S_nonCashSysInCnt Increments by 1 (one) if non-cashable voucher redeemed.

Table 21.68 G2S_VCE108 Meter Updates – EGM-Issued Voucher Redeemed (Sheet 2 of 2)

Bal Device Meter Description

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 72 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.17 G2S_VCE109 Voucher Rejected
This event MUST be generated by the EGM after a voucher redemption request has been denied (or a voucher
has not been redeemed for some other reason) and the voucher has been stacked or rejected, as appropriate.

Table 21.70 G2S_VCE108 Transaction Changes – voucherLog

Attribute Set to Value …

logSequence Unchanged.

deviceId Unchanged.

transactionId Unchanged.

voucherState Set to G2S_commitSent.

voucherAction Unchanged.

idReaderType Unchanged.

idNumber Unchanged.

playerId Unchanged.

validationId Unchanged.

voucherAmt Unchanged.

creditType Unchanged.

voucherSource Unchanged.

largeWin Unchanged.

voucherSequence Unchanged.

expireCredits Set to true if date/time expiration assigned to non-cashable credits.

expireDateTime Set to date/time assigned to credits if expireCredits is set to true.

expireDays Unchanged.

hostAction Unchanged.

hostException Unchanged.

transferAmt Set to voucherLog.voucherAmt.

transferDateTime Set to date/time the transfer was completed.

egmAction Set to G2S_redeemed (when stacked) or G2S_rejected (when not stacked), as
appropriate.

egmException Set to 0 (zero).

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 73
© 2019 Gaming Standards Association (GSA)

Table 21.71 G2S_VCE109 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes None.

Log State Changes Update voucherLog. See Table 21.72.

Related Info commitVoucher.

Table 21.72 G2S_VCE109 Transaction Changes – voucherLog (Sheet 1 of 2)

Attribute Set to Value …

logSequence Unchanged.

deviceId Unchanged.

transactionId Unchanged.

voucherState Set to G2S_commitSent.

voucherAction Unchanged.

idReaderType Unchanged.

idNumber Unchanged.

playerId Unchanged.

validationId Unchanged.

voucherAmt Unchanged.

creditType Unchanged.

voucherSource Unchanged.

largeWin Unchanged.

voucherSequence Unchanged.

expireCredits Unchanged.

expireDateTime Unchanged.

expireDays Unchanged.

hostAction Unchanged.

hostException Unchanged.

transferAmt Unchanged.

transferDateTime Date/time the voucher was rejected.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 74 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.28.18 G2S_VCE111 Voucher Commit Command Acknowledged
This event MUST be generated by the EGM after a commitVoucherAck response has been received from the
host. See Section 21.21, commitVoucherAck Command, for more details.

egmAction Set to G2S_rejected (when not stacked) or G2S_redeemed (when stacked), as
appropriate.

egmException Set to:

2 (two) if the host refused the transaction (returned error code).
3 (three) if hostException is not set to 0 (zero) and voucher rejected.
4 (four) if hostException is not set to 0 (zero) and voucher stacked.
5 (five) if the EGM aborted the transaction before it was authorized (timed out).

Set to other value, as appropriate, if EGM could not perform the transfer after it
was authorized.

Table 21.73 G2S_VCE111 Device, Meter, Log Changes, and Related Info

Details

Device State Changes None.

Meter State Changes None.

Log State Changes Update voucherLog. See Table 21.74.

Related Info commitVoucherAck.

Table 21.74 G2S_VCE111 Transaction Changes – voucherLog (Sheet 1 of 2)

Attribute Set to Value …

logSequence Unchanged.

deviceId Unchanged.

transactionId Unchanged.

voucherState Set to G2S_commitAcked.

voucherAction Unchanged.

idReaderType Unchanged.

idNumber Unchanged.

playerId Unchanged.

validationId Unchanged.

voucherAmt Unchanged.

Table 21.72 G2S_VCE109 Transaction Changes – voucherLog (Sheet 2 of 2)

Attribute Set to Value …

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 75
© 2019 Gaming Standards Association (GSA)

The EGM MUST generate this event when the systemOnLine attribute of the voucherStatus command is
changed from true to false. The EGM MUST generate this event regardless of whether the change occurred
due to voucher host offline or no receipt of an issueVoucherAck command. See Section 21.11.1.1,
systemOnLine Attribute, for more details.

creditType Unchanged.

voucherSource Unchanged.

largeWin Unchanged.

voucherSequence Unchanged.

expireCredits Unchanged.

expireDateTime Unchanged.

expireDays Unchanged.

hostAction Unchanged.

hostException Unchanged.

transferAmt Unchanged.

transferDateTime Unchanged.

egmAction Unchanged.

egmException Unchanged.

21.28.19 G2S_VCE112 Validation System Offline
Extension in v3.0: g2sVSO

Table 21.75 G2S_VCE112 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.systemOnLine = "false".

If voucherProfile.printOffLine = "false" then
voucherStatus.egmEnabled = "false".

Meter State Changes None.

Log State Changes None.

Related Info If the value of the voucherStatus.egmEnabled attribute is changed to false,
event G2S_VCE001 Device Disabled by EGM MUST be generated.

Table 21.74 G2S_VCE111 Transaction Changes – voucherLog (Sheet 2 of 2)

Attribute Set to Value …

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 76 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

The EGM MUST generate this event when the systemOnLine attribute of the voucherStatus command is
changed from false to true. See Section 21.11.1.1, systemOnLine Attribute, for more details.

21.28.20 G2S_VCE113 Validation System Not Offline
Extension in v3.0: g2sVSO

Table 21.76 G2S_VCE113 Device, Meter, Log Changes, and Related Info

Details

Device State Changes voucherStatus.systemOnLine = "true".

evaluate(voucherStatus.egmEnabled).

Meter State Changes None.

Log State Changes None.

Related Info If the value of the voucherStatus.egmEnabled attribute is changed to true,
event G2S_VCE002 Device Not Disabled by EGM MUST be generated.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 77
© 2019 Gaming Standards Association (GSA)

21.29 Examples
The sections below include diagrams that show the command sequences for status, profile, validation data and
log commands. Section 21.29.4 includes examples, as well as the command sequence diagram, for voucher
issuance and redemption commands.

21.29.1 Voucher Device Status Commands

21.29.2 Voucher Device Profile Commands

21.29.3 Validation Data Commands

setVoucherLockOut

voucherStatus

EGMHOST

getVoucherStatus

voucherStatus

EGMHOST

setVoucherState

voucherStatus

EGMHOST

getVoucherProfile

voucherProfile

HOST EGM

getValidationData

validationData

EGMHOST

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 78 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.29.4 Voucher Issuance and Redemption Commands

21.29.4.1 issueVoucher: EGM to Host

The following example highlights the construction of an issueVoucher command sent from an EGM to a
host after a $100 voucher has been issued.

<voucher
deviceId = "1"
dateTime = "2003-03-01T13:23:27.321-05:00"
commandId = "3001"
sessionId = "1001"
sessionType = "G2S_request"
timeToLive = "30000" >
<issueVoucher

transactionId = "23456"
idReaderType = "G2S_magCard"
idNumber = "987654"
playerId = "77777"
validationId = "012345678901234567"
voucherAmt = "10000000"
creditType = "G2S_cashable"
voucherSequence = "2"
transferDateTime = "2006-03-25T13:23:27.321-05:00"
egmAction = "G2S_issued" />

</voucher>

21.29.4.2 issueVoucherAck Response: Host to EGM

The following example highlights the construction of an issueVoucherAck command sent from a host to an
EGM to acknowledge the receipt of an issueVoucher command.

<voucher
deviceId = "1"
dateTime = "2006-03-25T13:23:27.432-05:00"
commandId = "2001"
sessionId = "1001"
sessionType = "G2S_response" >

issueVoucher

issueVoucherAck

HOST EGM

Voucher printed, issued

authorizeVoucher Authorizes or denies voucher redemption

redeemVoucher
Voucher inserted in EGM Note acceptor,
EGM requesting redemption

commitVoucher Voucher redeemed if authorized, or rejected

commitVoucherAck Acknowledges receipt of commitVoucher

Acknowledges receipt of issueVoucher

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 79
© 2019 Gaming Standards Association (GSA)

<issueVoucherAck
transactionId = "23456" />

</voucher>

21.29.4.3 redeemVoucher Request: EGM to Host

The following example highlights the construction of a redeemVoucher command sent from an EGM to a
host to initiate a voucher redemption cycle.

<voucher
deviceId = "1"
dateTime = "2006-03-25T13:23:27.543-05:00"
commandId = "3002"
sessionId = "1002"
sessionType = "G2S_request"
timeToLive = "30000" >
<redeemVoucher

transactionId = "23457"
idReaderType = "G2S_magCard"
idNumber = "987654"
playerId = "77777"
validationId = "012345678901234567" />

</voucher>

21.29.4.4 authorizeVoucher Response: Host to EGM

The following example highlights the construction of an authorizeVoucher command sent from a host to an
EGM in response to a redeemVoucher command to authorize a voucher redemption for $25.

<voucher
deviceId = "1"
dateTime = "2006-03-25T13:23:27.654-05:00"
commandId = "2002"
sessionId = "1002"
sessionType = "G2S_response" >
<authorizeVoucher

transactionId = "23457"
validationId = "012345678901234567"
voucherAmt = "2500000"
creditType = "G2S_nonCash"
expireCredits = "true"
expireDateTime = "2006-07-03T00:00:00.000-00:00" />

</voucher>

21.29.4.5 commitVoucher Request: EGM to Host

The following example highlights the construction of a commitVoucher command sent from an EGM to a
host to report that a voucher has been redeemed.

<voucher
deviceId = "1"
dateTime = "2006-03-25T13:23:27.765-05:00"
commandId = "3003"
sessionId = "1003"
sessionType = "G2S_request"

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 80 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

timeToLive = "30000" >
<commitVoucher

transactionId = "23457"
validationId = "012345678901234567"
voucherAmt = "2500000"
creditType = "G2S_nonCash"
expireCredits = "true"
expireDateTime = "2006-07-03T00:00:00.000-00:00"
transferAmt = "2500000"
transferDateTime = "2006-03-25T13:23:27.765-05:00"
egmAction = "G2S_redeemed" />

</voucher>

21.29.4.6 commitVoucherAck Response: Host to EGM

The following example highlights the construction of a commitVoucherAck command sent from a host to an
EGM to acknowledge the receipt of a commitVoucher command.

<voucher
deviceId = "1"
dateTime = "2006-03-25T13:23:27.876-05:00"
commandId = "2003"
sessionId = "1003"
sessionType = "G2S_response" >
<commitVoucherAck

transactionId = "23457" />
</voucher>

21.29.5 Voucher Log Commands

getVoucherLogStatus

voucherLogStatus

EGMHOST

getVoucherLog

voucherLogList

HOST EGM

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 81
© 2019 Gaming Standards Association (GSA)

21.30 Voucher Device Option Configuration
The following tables identify the G2S-specified configuration option selections for voucher devices. These
selections are set using commands from the optionConfig class. The current configuration option selections
for a voucher device are reported via the voucherProfile command.

Further descriptions of the sub-parameters can be found under the voucherProfile command.

21.30.1 Option Group Definitions

21.30.2 G2S Protocol Options Definitions

21.30.2.1 G2S Protocol Options Sub-Parameter Definitions

optionGroupId G2S_voucherOptions

optionGroupName G2S Voucher Options

optionId G2S_protocolOptions

securityLevel G2S_administrator

minSelections 1

maxSelections 1

duplicates n/a
paramKey n/a

Parameter Type Complex
paramId G2S_protocolParams

paramName G2S Protocol Parameters

paramHelp Standard G2S protocol parameters for voucher devices

Table 21.77 G2S Protocol Options Sub-Parameter Definitions

paramId paramName Example paramHelp

G2S_configurationId* Configuration
Identifier

123456 ID assigned by the last successful G2S
option configuration

G2S_restartStatus Enabled on Restart true Controls hostEnabled attribute status
upon EGM restart

G2S_requiredForPlay Required For Play true Device is required for game play

G2S_timeToLive Time to Live 30000 Time to live value for requests
(in milliseconds)

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 82 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.30.2.2 Example of G2S_protocolOptions Option

// G2S Protocol Options
<optionItem

optionId = "G2S_protocolOptions"
securityLevel = "G2S_administrator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_protocolParams"
paramName = "G2S Protocol Parameters"
paramHelp = "Standard G2S protocol parameters for voucher devices" >
<integerParameter

paramId = "G2S_configurationId"
paramName = "Configuration Identifier"
paramHelp = "ID assigned by the last successful G2S option configuration"
canModLocal = "false"
canModRemote = "false" />

<booleanParameter
paramId = "G2S_restartStatus"
paramName = "Enabled on Restart"
paramHelp = "Controls hostEnabled attribute status upon EGM restart"
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_requiredForPlay"
paramName = "Required For Play"
paramHelp = "Device is required for game play"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_timeToLive"
paramName = "Time To Live"
paramHelp = "Time to live value for requests (in milliseconds)"
canModLocal = "true"
canModRemote = "true"
minIncl = "0" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_protocolParams" >
<integerValue paramId = "G2S_configurationId" > 123456 </integerValue>
<booleanValue paramId = "G2S_restartStatus" > true </booleanValue>
<booleanValue paramId = "G2S_requiredForPlay" > true </booleanValue>
<integerValue paramId = "G2S_timeToLive" >30000</integerValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_protocolParams" >
<integerValue paramId = "G2S_configurationId" > 0 </integerValue>

* The configurationId is included as an option parameter for the host system’s convenience and is
used for reference purposes only. The parameter MUST always be reported by the EGM with the
canModRemote attribute set to false. As described in Section 9.16, setOptionChange Command the
host MUST always specify the current value of the configurationId as reported by the EGM when
setting this option — not the new configurationId specified by the host in the setOptionChange
command. This means that the host MAY have to request the current option settings from the EGM to
discover the current value of the configurationId before trying to change the option settings.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 83
© 2019 Gaming Standards Association (GSA)

<booleanValue paramId = "G2S_restartStatus" > true </booleanValue>
<booleanValue paramId = "G2S_requiredForPlay" > true </booleanValue>
<integerValue paramId = "G2S_timeToLive" >30000</integerValue>

</complexValue>
</optionDefaultValues>

</optionItem>

21.30.3 Voucher Options Definitions

21.30.3.1 Voucher Options Sub-Parameter Definitions

optionId G2S_voucherOptions

securityLevel G2S_operator

minSelections 1

maxSelections 1

duplicates n/a
paramKey n/a

Parameter Type Complex
paramId G2S_voucherParams

paramName Voucher Options

paramHelp Configuration parameters for this voucher device

Table 21.78 Voucher Options Sub-Parameter Definitions (Sheet 1 of 2)

paramId paramName Example paramHelp

G2S_idReaderId ID Reader to Use 1 ID reader to use for this voucher
device

G2S_combineCashableOut Combine Cashable
Credit Types

true Combine cashable and promo credits
on a single voucher

G2S_allowNonCashOut Allow Non-
Cashable Out

true Allow vouchers for non-cashable
credits

G2S_maxValIds Maximum
Validation Ids

20 Maximum validation IDs EGM may
buffer

G2S_minLevelValIds Minimum Level for
Validation Ids

20 Minimum validation IDs EGM must
maintain

G2S_valIdListRefresh Validation ID
Refresh Time

43200000

(12 hours)
Maximum time before EGM requests
validation ID list update

G2S_valIdListLife Validation ID
List Life

86400000

(24 hours)
Maximum life of validation IDs
without host intervention

G2S_voucherHoldTime Maximum Voucher
Hold Time

15000

(15 seconds)
Maximum time EGM should escrow a
voucher

G2S_printOffLine Print Offline true Allow vouchers to be printed while
host is offline

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 84 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.30.3.2 Example of G2S_voucherOptions Option

// Voucher options
<optionItem

optionId = "G2S_voucherOptions"
securityLevel = "G2S_operator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_voucherParams"
paramName = "Voucher Options"
paramHelp = "Configuration parameters for this voucher device" >
<integerParameter

paramId = "G2S_idReaderId"
paramName = "ID Reader to Use"
paramHelp = "ID reader to use for this voucher device"
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_combineCashableOut"
paramName = "Combine Cashable Credit Types."
paramHelp = "Combine cashable and promo credit in a single voucher"
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_allowNonCashOut"
paramName = "Allow Non-Cashable Out"
paramHelp = "Allow vouchers for non-cashable credits"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_maxValIds"
paramName = "Maximum Validation IDs"
paramHelp = "Maximum validation IDs EGM may buffer"
canModLocal = "true"
canModRemote = "true"
minIncl = "1" />

<integerParameter
paramId = "G2S_minLevelValIds"
paramName = "Minimum Level for Validation IDs"
paramHelp = "Minimum validation IDs EGM must maintain"
canModLocal = "true"
canModRemote = "true"

G2S_expireCashPromo Expire Days Cash
Promo

30 (days) Number of days before cashable and
promo vouchers expire

G2S_printExpCashPromo Print Cash Promo
Expirations

true Print expiration on cashable and
promo vouchers

G2S_expireNonCash Expire Non-
Cashable

30 (days) Default number of days before non-
cashable vouchers expire

G2S_printExpNonCash Print Non-
Cashable
Expirations

true Print expiration on non-cashable
vouchers

Table 21.78 Voucher Options Sub-Parameter Definitions (Sheet 2 of 2)

paramId paramName Example paramHelp

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 85
© 2019 Gaming Standards Association (GSA)

minIncl = "0" />
<integerParameter

paramId = "G2S_valIdListRefresh"
paramName = "Validation ID Refresh Time"
paramHelp = "Maximum time before EGM requests validation ID list update."
minIncl = "60000"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_valIdListLife"
paramName = "Validation ID List Life"
paramHelp = "Maximum life of validation IDs without host intervention."
minIncl = "120000"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_voucherHoldTime"
paramName = "Maximum Voucher Hold Time"
paramHelp = "Maximum time EGM should escrow a voucher"
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_printOffLine"
paramName = "Print Offline"
paramHelp = "Allow vouchers to be printed while host offline"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_expireCashPromo"
paramName = "Expire Days Cash Promo"
paramHelp = "Number of days before cashable and promo vouchers expire."
canModLocal = "true"
canModRemote = "true"
minIncl = "0" />

<booleanParameter
paramId = "G2S_printExpCashPromo"
paramName = "Print Cash Promo Expirations"
paramHelp = "Print expiration on cashable and promo vouchers"
canModLocal = "true"
canModRemote = "true" />

<integerParameter
paramId = "G2S_expireNonCash"
paramName = "Expire Non-Cashable"
paramHelp = "Default number of days before non-cashable vouchers expire."
canModLocal = "true"
canModRemote = "true"
minIncl = "0" />

<booleanParameter
paramId = "G2S_printExpNonCash"
paramName = "Print Non-Cashable Expirations"
paramHelp = "Print expiration on non-cashable vouchers"
canModLocal = "true"
canModRemote = "true" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_voucherParams" >
<integerValue paramId = "G2S_idReaderId" > 54321 </integerValue>
<booleanValue paramId = "G2S_combineCashableOut" > false </booleanValue>
<booleanValue paramId = "G2S_allowNonCashOut" > true </booleanValue>
<integerValue paramId = "G2S_maxValIds" > 15 </integerValue>
<integerValue paramId = "G2S_minLevelValIds" > 10 </integerValue>

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 86 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

<integerValue paramId = "G2S_valIdListRefresh" > 43200000 </integerValue>
<integerValue paramId = "G2S_valIdListLife" > 86400000 </integerValue>
<integerValue paramId = "G2S_voucherHoldTime" > 10000 </integerValue>
<booleanValue paramId = "G2S_printOffLine" > true </booleanValue>
<integerValue paramId = "G2S_expireCashPromo" > 90 </integerValue>
<booleanValue paramId = "G2S_printExpCashPromo" > true </booleanValue>
<integerValue paramId = "G2S_expireNonCash" > 30 </integerValue>
<booleanValue paramId = "G2S_printExpNonCash" > true </booleanValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_voucherParams" >
<integerValue paramId = "G2S_idReaderId" > 54321 </integerValue>
<booleanValue paramId = "G2S_combineCashableOut" > false </booleanValue>
<booleanValue paramId = "G2S_allowNonCashOut" > true </booleanValue>
<integerValue paramId = "G2S_maxValIds" > 15 </integerValue>
<integerValue paramId = "G2S_minLevelValIds" > 10 </integerValue>
<integerValue paramId = "G2S_valIdListRefresh" > 43200000 </integerValue>
<integerValue paramId = "G2S_valIdListLife" > 86400000 </integerValue>
<integerValue paramId = "G2S_voucherHoldTime" > 10000 </integerValue>
<booleanValue paramId = "G2S_printOffLine" > true </booleanValue>
<integerValue paramId = "G2S_expireCashPromo" > 90 </integerValue>
<booleanValue paramId = "G2S_printExpCashPromo" > true </booleanValue>
<integerValue paramId = "G2S_expireNonCash" > 30 </integerValue>
<booleanValue paramId = "G2S_printExpNonCash" > true </booleanValue>

</complexValue>
</optionDefaultValues>

</optionItem>

21.30.4 Voucher Text Fields Option Definitions

21.30.4.1 Voucher Text Fields Sub-Parameter Definitions

optionId G2S_voucherTextFields

securityLevel G2S_operator

minSelections 1

maxSelections 1

duplicates n/a
paramKey n/a

Parameter Type Complex
paramId G2S_textFields

paramName Voucher Text Fields List

paramHelp Text fields used by this voucher device

Table 21.79 Voucher Text Fields Sub-Parameter Definitions (Sheet 1 of 2)

paramId paramName Example paramHelp

G2S_propName Property Name Penny Palace Name of the property

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 87
© 2019 Gaming Standards Association (GSA)

21.30.4.2 Example of G2S_voucherTextFields Option

// Voucher Text Field options
<optionItem

optionId = "G2S_voucherTextFields"
securityLevel = "G2S_operator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_textFields"
paramName = "Voucher Text Fields List"
paramHelp = "Text fields used by this voucher device" >
<stringParameter

paramId = "G2S_propName"
paramName = "Property Name"
paramHelp = "Name of the property"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "40"/>

<stringParameter
paramId = "G2S_propLine1"

G2S_propLine1 Property Line 1 777 Winner Way Property address line 1

G2S_propLine2 Property Line 2 Luck Town, USA Property address line 2

G2S_titleCash Cashable Title CASHOUT
VOUCHER

Title printed on vouchers for
cashable credits

G2S_titlePromo Promotional
Title

CASHOUT
VOUCHER

Title printed on vouchers for
promotional cashable credits

G2S_titleNonCash Non-Cashable
Title

PLAYABLE ONLY Title printed on vouchers for non-
cashable credits

G2S_titleLargeWin Large Win Title JACKPOT
VOUCHER

Title printed on vouchers for wins
greater than
cabinetProfile.largeWinLimit

G2S_titleBonusCash Bonus Cashable
Title

CASHOUT
VOUCHER

Title printed on bonus award
vouchers for cashable credits

G2S_titleBonusPromo Bonus
Promotional
Title

CASHOUT
VOUCHER

Title printed on bonus award
vouchers for promotional cashable
credits

G2S_titleBonusNonCash Bonus Non-
Cashable Title

PLAYABLE ONLY Title printed on bonus award
vouchers for non-cashable credits

G2S_titleWatCash WAT Cashable
Title

CASHOUT
VOUCHER

Title printed on WAT transfer
vouchers for cashable credits

G2S_titleWatPromo WAT Promotional
Title

CASHOUT
VOUCHER

Title printed on WAT transfer
vouchers for promotional cashable
credits

G2S_titleWatNonCash WAT Non-
Cashable Title

PLAYABLE ONLY Title printed on WAT transfer
vouchers for non-cashable credits

Table 21.79 Voucher Text Fields Sub-Parameter Definitions (Sheet 2 of 2)

paramId paramName Example paramHelp

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 88 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

paramName = "Property Line 1"
paramHelp = "Property address line 1"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "40"/>

<stringParameter
paramId = "G2S_propLine2"
paramName = "Property Line 2"
paramHelp = "Property address line 2"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "40"/>

<stringParameter
paramId = "G2S_titleCash"
paramName = "Cashable Title"
paramHelp = "Title printed on vouchers for cashable credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titlePromo"
paramName = "Promotional Title"
paramHelp = "Title printed on vouchers for promotional cashable credits."
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleNonCash"
paramName = "Non-Cashable Title"
paramHelp = "Title printed on vouchers for non-cashable credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleLargeWin"
paramName = "Large Win Title"
paramHelp = "Title printed on vouchers for large wins (jackpots)"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleBonusCash"
paramName = "Bonus Cashable Title"
paramHelp = "Title printed on bonus award vouchers for cashable credits."
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleBonusPromo"
paramName = "Bonus Promotional Title"
paramHelp = "Title printed on bonus award vouchers for promotional
 cashable credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 89
© 2019 Gaming Standards Association (GSA)

maxLen = "16"/>
<stringParameter

paramId = "G2S_titleBonusNonCash"
paramName = "Bonus Non-Cashable Title"
paramHelp = "Title printed on bonus award vouchers for non-cashable credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleWatCash"
paramName = "WAT Cashable Title"
paramHelp = "Title printed on WAT transfer vouchers for cashable credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleWatPromo"
paramName = "WAT Promotional Title"
paramHelp = "Title printed on WAT transfer vouchers for promotional cashable

 credits"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

<stringParameter
paramId = "G2S_titleWatNonCash"
paramName = "WAT Non-Cashable Title"
paramHelp = "Title printed on WAT transfer vouchers for non-cashable

credits."
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16"/>

</complexParameter>
</optionParameters>

<optionCurrentValues>
<complexValue paramId = "G2S_textFields" >

<stringValue paramId = "G2S_propName" > Penny Palace </stringValue>
<stringValue paramId = "G2S_propLine1" > 777 Winner Way </stringValue>
<stringValue paramId = "G2S_propLine2" > Lucky Town, USA </stringValue>
<stringValue paramId = "G2S_titleCash" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titlePromo" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleNonCash" > PLAYABLE ONLY </stringValue>
<stringValue paramId = "G2S_titleLargeWin" > JACKPOT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleBonusCash" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleBonusPromo" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleBonusNonCash" > PLAYABLE ONLY </stringValue>
<stringValue paramId = "G2S_titleWatCash" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleWatPromo" > CASHOUT VOUCHER </stringValue>
<stringValue paramId = "G2S_titleWatNonCash" > PLAYABLE ONLY </stringValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_textFields" >
<stringValue paramId = "G2S_propName" > </stringValue>
<stringValue paramId = "G2S_propLine1" > </stringValue>
<stringValue paramId = "G2S_propLine2" > </stringValue>
<stringValue paramId = "G2S_titleCash" > </stringValue>
<stringValue paramId = "G2S_titlePromo" > </stringValue>
<stringValue paramId = "G2S_titleNonCash" > </stringValue>

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 90 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

<stringValue paramId = "G2S_titleLargeWin" > </stringValue>
<stringValue paramId = "G2S_titleBonusCash" > </stringValue>
<stringValue paramId = "G2S_titleBonusPromo" > </stringValue>
<stringValue paramId = "G2S_titleBonusNonCash" > </stringValue>
<stringValue paramId = "G2S_titleWatCash" > </stringValue>
<stringValue paramId = "G2S_titleWatPromo" > </stringValue>
<stringValue paramId = "G2S_titleWatNonCash" > </stringValue>

</complexValue>
</optionDefaultValues>

</optionItem>

The host MUST be aware that an EGM may support the G2S_protocolOptions3 option, as well as the
G2S_configComplete parameter, even though they have been deprecated. Therefore, the host must not
assume that the EGM does not support the G2S_protocolOptions3 option or the G2S_configComplete
parameter; hosts MUST support the G2S_protocolOptions3 option when reported by the EGM through the
optionConfig class.

21.30.6.1 Voucher Options 2 Sub-Parameter Definitions

21.30.5 Host Aware Backwards Compatibility
Extension in v3.0: g2s3

21.30.6 Voucher Options 2 Definitions
Extension in v2.0.0: g2s1

optionId G2S_voucherOptions2

securityLevel G2S_operator

minSelections 1

maxSelections 1

duplicates n/a
paramKey n/a

Parameter Type Complex
paramId G2S_voucherParams2

paramName Additional voucher Options

paramHelp Additional configuration parameters for this voucher device

Table 21.80 Voucher Options 2 Sub-Parameter Definitions (Sheet 1 of 2)

paramId paramName Example paramHelp

G2S_allowVoucherIssue Allow Validation
Data

true Indicates whether the voucher
device is allowed to request
validation data; does not
(directly) control voucher issuance

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 91
© 2019 Gaming Standards Association (GSA)

21.30.6.2 Example of G2S_voucherOptions2 Option

// Voucher Options2
<optionItem

optionId = "G2S_voucherOptions2"
securityLevel = "G2S_operator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_voucherParams2"
paramName = "Additional Voucher Options"
paramHelp = "Additional configuration parameters for this voucher device" >

<booleanParameter
paramId = "G2S_allowVoucherIssue"
paramName = "Allow Voucher Issuance"
paramHelp = "Indicates whether validation data may be requested."
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_allowVoucherRedeem"

paramName = "Allow Voucher Redemption"
paramHelp = "Indicates whether vouchers may be redeemed."
canModLocal = "true"
canModRemote = "true" />

<booleanParameter
paramId = "G2S_printNonCashOffLine"
paramName = "Print Non-Cashable Voucher When Offline"
paramHelp = "Indicates whether vouchers for non-cashable credits may be printed
while offline."
canModLocal = "true"
canModRemote = "true" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_voucherParams2" >
<booleanValue paramId = "G2S_allowVoucherIssue" > true </booleanValue>
<booleanValue paramId = "G2S_allowVoucherRedeem" > true </booleanValue>
<booleanValue paramId = "G2S_printNonCashOffLine" > true </booleanValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_voucherParams2" >
<booleanValue paramId = "G2S_allowVoucherIssue" > true </booleanValue>
<booleanValue paramId = "G2S_allowVoucherRedeem" > true </booleanValue>
<booleanValue paramId = "G2S_printNonCashOffLine" > true </booleanValue>

</complexValue>
</optionDefaultValues>

G2S_allowVoucherRedeem Voucher
Redemption
Allowed

true Indicates whether the voucher
device is allowed to redeem vouchers

G2S_printNonCashOffLine Print Non-
Cashable Vouchers
When Offline

true Indicates whether vouchers for non-
cashable credits may be printed
while offline

Table 21.80 Voucher Options 2 Sub-Parameter Definitions (Sheet 2 of 2)

paramId paramName Example paramHelp

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 92 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

</optionItem>

21.30.7.1 Voucher Limits Sub-Parameter Definitions

21.30.7.2 Example of G2S_voucherLimits Option

// Voucher Limit Options
<optionItem

optionId = "G2S_voucherLimits"
securityLevel = "G2S_administrator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_limitParams"
paramName = "Voucher Limit Parameters"
paramHelp = "Maximum values for printed vouchers" >
<integerParameter

paramId = "G2S_maxOnLinePayOut"
paramName = "Maximum Online Voucher"
paramHelp = " Maximum value of an online voucher (in millicents)"
canModLocal = "true"
canModRemote = "true" />

<integerParameter

21.30.7 Voucher Limits Option Definitions
Extension in v2.0.0: g2s1

optionId G2S_voucherLimits

securityLevel G2S_administrator

minSelections 1

maxSelections 1

duplicates n/a
paramKey n/a

Parameter Type Complex
paramId G2S_limitParams

paramName Voucher Limit Parameters

paramHelp Maximum values for printed vouchers

Table 21.81 Voucher Limits Sub-Parameter Definitions

paramId paramName Example paramHelp

G2S_maxOnLinePayOut Maximum Online
Voucher

150000000 Maximum value of an online voucher
(in millicents)

G2S_maxOffLinePayOut Maximum Offline
Voucher

50000000 Maximum value of an offline voucher
(in millicents)

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 93
© 2019 Gaming Standards Association (GSA)

paramId = "G2S_maxOffLinePayOut"
paramName = "Maximum Offline Voucher"
paramHelp = " Maximum value of an offline voucher (in millicents)"
canModLocal = "true"
canModRemote = "true" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_limitParams" >
<integerValue paramId = "G2S_maxOnLinePayOut" > 150000000 </integerValue>
<integerValue paramId = "G2S_maxOffLinePayOut" > 50000000 </integerValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_limitParams" >
<integerValue paramId = "G2S_maxOnLinePayOut" > 150000000 </integerValue>
<integerValue paramId = "G2S_maxOffLinePayOut" > 50000000 </integerValue>

</complexValue>
</optionDefaultValues>

</optionItem>

21.30.8.1 Use Player ID Reader Sub-Parameter Definitions

21.30.8 Use Player ID Reader Option Definition
Extension in v3.0: g2s3

optionId G2S_usePlayerIdReaderOptions

securityLevel G2S_operator

minSelections 1

maxSelections 1

duplicates n/a

paramKey n/a

Parameter Type Complex

paramId G2S_usePlayerIdReaderParams

paramName Use Player ID Reader

paramHelp Parameters associated with Use-Player-ID-Reader option.

Table 21.82 Use Player ID Reader Sub-Parameter Definitions

paramId paramName Example paramHelp

G2S_usePlayerIdReader Use Player ID
Reader

true Indicates whether the ID reader
associated with the currently
active player session should be
used.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 94 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.30.8.2 Example of G2S_usePlayerIdReaderOptions Option

// Use Player ID Reader Option
<optionItem

optionId = "G2S_usePlayerIdReaderOptions"
securityLevel = "G2S_operator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_usePlayerIdReaderParams"
paramName = "Use Player ID Reader Parameters"
paramHelp = "Parameters associated with Use-Player-ID-Reader option." >
<booleanParameter

paramId = "G2S_usePlayerIdReader"
paramName = "Use Player ID Reader"
paramHelp = "Indicates whether the ID reader associated with the currently
active player session should be used."
canModLocal = "true"
canModRemote = "true" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_usePlayerIdReaderParams" >
<booleanValue paramId = "G2S_usePlayerIdReader" > true </booleanValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_usePlayerIdReaderParams" >
<booleanValue paramId = "G2S_usePlayerIdReader" > false </booleanValue>

</complexValue>
</optionDefaultValues>

</optionItem>

21.30.9 Offline Handpay Voucher Option Definitions
Extension in v3.0: g2sVSO1

optionId G2S_handpayVoucherOptions

securityLevel G2S_operator

minSelections 1

maxSelections 1

duplicates n/a

paramKey n/a

Parameter Type Complex

paramId G2S_handpayVoucherParams

paramName Handpay Voucher Parameters

paramHelp Parameters for enabling handpay vouchers.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 95
© 2019 Gaming Standards Association (GSA)

21.30.9.1 Offline Handpay Voucher Options Sub-Parameter Definitions

21.30.9.2 Example of G2S_handpayVoucherOptions Option

// Offline Handpay Voucher Options
<optionItem

optionId = "G2S_handpayVoucherOptions"
securityLevel = "G2S_operator"
minSelections = "1"
maxSelections = "1" >
<optionParameters>

<complexParameter
paramId = "G2S_handpayVoucherParams"
paramName = "Offline Handpay Voucher Parameters"
paramHelp = "Parameters for enabling offline handpay vouchers" >
<booleanParameter

paramId = "G2S_enableHandpayVoucher"
paramName = "Enable offline handpay vouchers"
paramHelp = "Indicates offline handpay vouchers are enabled"
canModLocal = "true"
canModRemote = "true" />

<stringParameter
paramId = "G2S_titleHandpayVoucher"
paramName = "Offline handpay voucher title"
paramHelp = "Title printed on offline handpay vouchers"
canModLocal = "true"
canModRemote = "true"
minLen = "0"
maxLen = "16" />

</complexParameter>
</optionParameters>
<optionCurrentValues>

<complexValue paramId = "G2S_handpayVoucherParams" >
<booleanValue paramId = "G2S_enableHandpayVoucher" > false </booleanValue>
<stringValue paramId = "G2S_titleHandpayVoucher" > HANDPAY VOUCHER </stringValue>

</complexValue>
</optionCurrentValues>
<optionDefaultValues>

<complexValue paramId = "G2S_handpayVoucherParams" >
<booleanValue paramId = "G2S_enableHandpayVoucher" > false </booleanValue>
<stringValue paramId = "G2S_titleHandpayVoucher" > HANDPAY VOUCHER </stringValue>

</complexValue>
</optionDefaultValues>

</optionItem>

Table 21.83 Offline Handpay Voucher Sub-Parameter Definitions

paramId paramName Example paramHelp

G2S_enableHandpayVoucher Enable offline handpay
vouchers

false Indicates whether offline handpay
vouchers are enabled.

G2S_titleHandpayVoucher Offline handpay
voucher title

HANDPAY
VOUCHER

Title printed on offline handpay
vouchers.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 96 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

21.31 Certification Requirements
The following tables identify the functional groups for this class in which a product may be certified. The
tables also identify the configuration options that must be implemented for a product to be certified. See
Section 1.28, Certification Requirements for more details.

Table 21.84 voucher Class Functional Groups

Functional Group Associated Commands

Core Voucher Functionality (g2s) setVoucherState
voucherStatus
setVoucherLockOut
getVoucherStatus
getVoucherProfile
voucherProfile
getVoucherLogStatus
voucherLogStatus
getVoucherLog
voucherLogList

Issue Voucher Support (g2s) getValidationData
validationData
issueVoucher
issueVoucherAck

Redeem Voucher Support (g2s) redeemVoucher
authorizeVoucher
commitVoucher
commitVoucherAck

Validation System Offline Support (g2sVSO) None

Offline Handpay Voucher Support (g2sVSO1) None

Table 21.85 voucher Class Configuration Options

Element Option Configuration

voucherProfile configurationId Required.

restartStatus Required.

useDefaultConfig Optional; SHOULD be prohibited and SHOULD be
set to false.

requiredForPlay Required.

minLogEntries Optional.

timeToLive Required.

idReaderId Required.

combineCashableOut Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 97
© 2019 Gaming Standards Association (GSA)

allowNonCashOut Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

maxValIds Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

minLevelValIds Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

valIdListRefresh Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

valIdListLife Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

voucherHoldTime Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

printOffLine Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

expireCashPromo Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

printExpCashPromo Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

expireNonCash Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

printExpNonCash Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

propName Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

propLine1 Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

Table 21.85 voucher Class Configuration Options

Element Option Configuration

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 98 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

propLine2 Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

titleCash Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

titlePromo Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

titleNonCash Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

titleLargeWin Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

titleBonusCash Conditional; required when Issue Voucher Support and
Core Bonus Functionality are to be certified; prohibited
when Issue Voucher Support or Core Bonus
Functionality are not implemented.

titleBonusPromo Conditional; required when Issue Voucher Support and
Core Bonus Functionality are to be certified; prohibited
when Issue Voucher Support or Core Bonus
Functionality are not implemented.

titleBonusNonCash Conditional; required when Issue Voucher Support and
Core Bonus Functionality are to be certified; prohibited
when Issue Voucher Support or Core Bonus
Functionality are not implemented.

titleWatCash Conditional; required when Issue Voucher Support and
Core Wagering Account Functionality are to be
certified; prohibited when Issue Voucher Support or
Core Wagering Account Functionality are not
implemented.

titleWatPromo Conditional; required when Issue Voucher Support and
Core Wagering Account Functionality are to be
certified; prohibited when Issue Voucher Support or
Core Wagering Account Functionality are not
implemented.

Table 21.85 voucher Class Configuration Options

Element Option Configuration

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Released: 2019/07/11 Page 99
© 2019 Gaming Standards Association (GSA)

titleWatNonCash Conditional; required when Issue Voucher Support and
Core Wagering Account Functionality are to be
certified; prohibited when Issue Voucher Support or
Core Wagering Account Functionality are not
implemented.

configDateTime Optional.

configComplete Optional; SHOULD be prohibited and SHOULD be
set to true.

allowVoucherIssue Conditional; required when Issue Voucher Support is
to be certified; prohibited, and MUST be set to false,
when Issue Voucher Support is not implemented.

allowVoucherRedeem Conditional; required when Redeem Voucher Support
is to be certified; prohibited, and MUST be set to false,
when Redeem Voucher Support is not implemented.

maxOnLinePayOut Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

maxOffLinePayOut Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

printNonCashOffLine Conditional; required when Issue Voucher Support is
to be certified; prohibited when Issue Voucher Support
is not implemented.

cashOutToVoucher Optional.

redeemPrefix Optional.

usePlayerIdReader Required.

noAckTimer Conditional; required when Validation System Offline
Support is to be certified; prohibited when Validation
System Offline Support is not implemented.

enableHandpayVoucher Conditional; required when Offline Handpay Voucher
Support is to be certified; prohibited, and MUST be set
to false, when Offline Handpay Voucher Support is not
implemented.

titleHandpayVoucher Conditional; required when Offline Handpay Voucher
Support is to be certified; prohibited when Offline
Handpay Voucher Support is not implemented.

Table 21.85 voucher Class Configuration Options

Element Option Configuration

G2S™ MESSAGE PROTOCOL V3.1 Chapter 21
Look Inside voucher Class

Page 100 Released: 2019/07/11
© 2019 Gaming Standards Association (GSA)

	Chapter 21 Look Inside voucher Class
	21.1 Introduction
	21.1.1 Device Class Information: Single-Device
	21.1.2 allowVoucherIssue and allowVoucherRedeem Attributes

	21.2 Transaction Identifiers
	21.3 Seeds and Validation IDs
	21.3.1 allowVoucherIssue Attribute
	21.3.2 Validation System Offline

	21.4 Manual Authentication
	21.4.1 printNonCashOffLine Attribute
	21.4.2 Test Cases for Voucher Authentication Algorithm

	21.5 Transaction Logs
	21.6 Log Sequence Numbers
	21.7 Request-Response Pairs
	21.7.1 Owner-Controlled Parameters

	21.8 setVoucherState Command
	21.8.1 Command Description
	21.8.2 Attribute and Element Detail

	21.9 setVoucherLockOut Command
	21.9.1 Command Description
	21.9.2 Attribute and Element Detail

	21.10 getVoucherStatus Command
	21.10.1 Command Description
	21.10.2 Attribute and Element Detail

	21.11 voucherStatus Command
	21.11.1 Command Description
	21.11.2 Attribute and Element Detail

	21.12 getVoucherProfile Command
	21.12.1 Command Description
	21.12.2 Attribute and Element Detail

	21.13 voucherProfile Command
	21.13.1 Command Description
	21.13.2 Attribute and Element Detail

	21.14 getValidationData Command
	21.14.1 Command Description
	21.14.2 Attribute and Element Detail

	21.15 validationData Command
	21.15.1 Command Description
	21.15.2 Attribute and Element Detail

	21.16 issueVoucher Command
	21.16.1 Command Description
	21.16.2 Attribute and Element Detail

	21.17 issueVoucherAck Command
	21.17.1 Command Description
	21.17.2 Attribute and Element Detail

	21.18 redeemVoucher Command
	21.18.1 Command Description
	21.18.2 Attribute and Element Detail

	21.19 authorizeVoucher Command
	21.19.1 Command Description
	21.19.2 Attribute and Element Detail

	21.20 commitVoucher Command
	21.20.1 Command Description
	21.20.2 Attribute and Element Detail

	21.21 commitVoucherAck Command
	21.21.1 Command Description
	21.21.2 Attribute and Element Detail

	21.22 getVoucherLogStatus Command
	21.22.1 Command Description
	21.22.2 Attribute and Element Detail

	21.23 voucherLogStatus Command
	21.23.1 Command Description
	21.23.2 Attribute and Element Detail

	21.24 getVoucherLog Command
	21.24.1 Command Description
	21.24.2 Attribute and Element Detail

	21.25 voucherLogList Command
	21.25.1 Command Description
	21.25.2 Attribute and Element Detail

	21.26 Data Types
	21.26.1 t_voucherActions Enumerations: Voucher Action Codes
	21.26.2 t_hostVoucherActions Enumerations: Host Action Codes
	21.26.3 t_egmVoucherActions Enumerations: EGM Action Codes
	21.26.4 t_hostVoucherExceptions Enumerations: Host Transfer Exception Codes
	21.26.5 t_egmVoucherExceptions Enumerations: EGM Transfer Exception Codes
	21.26.6 t_voucherSources Enumerations: Voucher Source Codes
	21.26.7 t_voucherStates Enumerations: Voucher Transaction Status Codes

	21.27 Error Codes
	21.28 Event Codes
	21.28.1 Affected Data
	21.28.2 G2S_VCE001 Device Disabled by EGM
	21.28.3 G2S_VCE002 Device Not Disabled by EGM
	21.28.4 G2S_VCE003 Device Disabled by Host
	21.28.5 G2S_VCE004 Device Not Disabled by Host
	21.28.6 G2S_VCE005 Device Configuration Changed by Host
	21.28.7 G2S_VCE006 Device Configuration Changed by Operator
	21.28.8 G2S_VCE009 Device Locked by Host
	21.28.9 G2S_VCE010 Device Not Locked by Host
	21.28.10 G2S_VCE101 Validation ID Data Expired
	21.28.11 G2S_VCE102 Validation ID Data Updated
	21.28.12 G2S_VCE103 Voucher Issued
	21.28.13 G2S_VCE105 Voucher Issue Command Acknowledged
	21.28.14 G2S_VCE106 Voucher Redemption Requested
	21.28.15 G2S_VCE107 Voucher Authorized
	21.28.16 G2S_VCE108 Voucher Redeemed
	21.28.17 G2S_VCE109 Voucher Rejected
	21.28.18 G2S_VCE111 Voucher Commit Command Acknowledged
	21.28.19 G2S_VCE112 Validation System Offline
	21.28.20 G2S_VCE113 Validation System Not Offline

	21.29 Examples
	21.29.1 Voucher Device Status Commands
	21.29.2 Voucher Device Profile Commands
	21.29.3 Validation Data Commands
	21.29.4 Voucher Issuance and Redemption Commands
	21.29.5 Voucher Log Commands

	21.30 Voucher Device Option Configuration
	21.30.1 Option Group Definitions
	21.30.2 G2S Protocol Options Definitions
	21.30.3 Voucher Options Definitions
	21.30.4 Voucher Text Fields Option Definitions
	21.30.5 Host Aware Backwards Compatibility
	21.30.6 Voucher Options 2 Definitions
	21.30.7 Voucher Limits Option Definitions
	21.30.8 Use Player ID Reader Option Definition
	21.30.9 Offline Handpay Voucher Option Definitions

	21.31 Certification Requirements

